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Welcome to CMMR 2012

On behalf of the Conference Committee, it is a pleasure for us to welcome you to
London for the 9th International Symposium on Computer Music Modeling and Retrieval
(CMMR 2012): Music and Emotions. Jointly organised by the Centre for Digital Music,
Queen Mary University of London, and the CNRS - Laboratoire de Mécanique et
d'Acoustique, Marseille, France, CMMR 2012 brings together researchers, educators,
librarians, composers, performers, software developers, members of industry, and others
with an interest in computer music modeling, retrieval, analysis, and synthesis to join us
for what promises to be a great event.

For this year's symposium, we chose the theme of Music and Emotions. Music can
undoubtedly trigger various types of emotions within listeners. The power of music to
affect our mood may explain why music is such a popular and universal art form.
Research in cognitive science has investigated these effects, including the enhancement of
intellectual faculties in given conditions by inducing positive affect. Music psychology has
studied the production and discrimination of various types of expressive intentions and
emotions in the communication chain between composer, performer and listener. Music
informatics research has employed machine learning algorithms to discover relationships
between objective features computed from audio recordings and subjective mood labels
given by human listeners. But the understanding of the genesis of musical emotions and
the mapping of musical variables to emotional responses remain complex research
problems.

CMMR 2012 received over 150 submissions of papers, music, tutorials, and demos,
and the committees chose the best of these to form a programme with seven technical
sessions, two poster sessions, two panel sessions, a demo session, three concerts, two
tutorials and a workshop. We are honoured to host the following invited speakers covering
various aspects of our theme: Patrik Juslin (music psychology), Laurent Daudet (music
signal processing) and Simon Boswell (film music composition). Ample time has been left
between sessions for discussion and networking, complemented by the evening social
programme, consisting of a welcome reception at Wilton’s Music Hall, and a conference
banquet on Thursday 21st June at Under the Bridge, which will feature a concert from the
French band BBT and a jam session, in which delegates are invited to join in.

We wish to thank Mitsuko Aramaki, Richard Kronland-Martinet and Selvi Ystad for
giving us the opportunity to host this conference and for their work selecting the
programme. We also thank our sponsors, who have generously supported the conference,
allowing us to offset some of the costs of holding a conference in pre-Olympic London,
including very busy scientific, musical and social programmes. Finally, we would like to
take the opportunity to thank all of the members of the various committees, listed on the
following pages, for their contribution to the symposium, the reviewers for their
meticulous hard work, as well as the authors, presenters, composers and musicians taking
part in the programme, without whom we would not have been able to host CMMR 2012.

We hope you enjoy the various scientific, musical and social events of the next four
days, and that your time with us in London is rewarding.

Mathieu Barthet and Simon Dixon
CMMR 2012 Symposium Chairs
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Programme

| Tuesday 19th June

09:00-10:00  Registration

10:00-12:30  Tutorial/Workshop 1
Pure Data and Sound Design (Andy Farnell)

10:00-12:30  Tutorial 2
Musicology and Music Information Retrieval Tools (Daniel Leech-

Wilkinson and Dan Tidhar)

10:00-12:30 CMMR 2012 Music Concert and C4DM Recording and Performance
Spaces Tour

11:00-12:00  Coffee Break
12:30-13:30  Lunch
13:30-17:00  Cross-Disciplinary Perspectives on Expressive Performance
Workshop
Supported by the Arts and Humanities Research Council (AHRC)
15:00-17:00  Tour of British Library Sound Studios
15:00-16:00  Coffee Break

18:30-19:30  Welcome Reception (Balconies of Wilton's Grand Music Hall)

20:00-22:00 New Resonances Festival at Wilton's Music Hall (Concert 1)
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15:00 - 16:40
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20:00 - 22:00

Registration
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Keynote Talk 1: "Hearing with our hearts: Psychological perspectives
on music and emotions" (Prof. Patrik N. Juslin)

Coffee Break

Oral session 1: Music Emotion Analysis

Yamaha Talk

Lunch

Poster Session 1: Music Emotion: Analysis, Retrieval, and
Multimodal Approaches, Synthesis, Symbolic Music-IR, Spatial
Audio, Performance, Semantic Web

Oral Session 2: 3D Audio and Sound Synthesis

Coffee break

Panel 1: "Production Music: Mood and Metadata" (Dr. Mathieu
Barthet, David Marston, Will Clark, Joanna Gregory, Marco Perry)

New Resonances Festival at Wilton's Music Hall (Concert 2)
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09:30-10:30  Keynote Talk 2: "The why, how, and what of sparse representations
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11:00 - 12:20  Oral Session 3: Computer Models of Music Perception and
Cognition: Applications and Implications for MIR

12:20-12:40  myfii Talk

12:40 - 13:40  Lunch

13:40 - 15:00  Poster session 2: Computer Models of Music Perception and
Cognition, Music Information Retrieval, Music Similarity and
Recommendation, Musicology, Intelligent Music Tuition Systems

15:00 - 16:40  Oral session 4: Music Emotion Recognition

16:40 - 17:00  Coffee break

17:00 - 18:30  Panel 2: "The Future of Music Information Research" (Prof. Geraint
A. Wiggins, Prof. Joydeep Bhattacharya, Prof. Tim Crawford, Dr.
Alan Marsden, Prof. John Sloboda)

20:00 - 00:00  Gala Dinner at the Under The Bridge venue (Chelsea Football Club)
followed by BBT Concert and Open Jam Session
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Lunch

Demo Session
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Session 6: Film Soundtrack and Music Recommendation
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Oral Session 7: Computational Musicology and Music Education

New Resonances Festival at Wilton's Music Hall (Concert 3)
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Oral session 1:
Music Emotion Analysis



Continuous Response to Music using Discrete Emotion
Faces

Emery Schubert', Sam Ferguson®, Natasha Farrar', David Taylor' and
Gary E. McPherson?,

! Empirical Musicology Group, University of New South Wales, Sydney, Australia
2 University of Technology, Sydney, Australia
Melbourne Conservatorium of Music, University of Melbourne, Melbourne, Australia
E.Schubert@unsw.edu.au

3

Abstract. An interface based on expressions in simple graphics of faces were
aligned in a clock-like distribution with the aim of allowing participants to
quickly and easily rate emotions in music continuously. We developed the
interface and tested it using six extracts of music, one targeting each of the six
faces: ‘Excited’ (at 1 o’clock), ‘Happy’ (3), ‘Calm’ (5), ‘Sad’ (7), ‘Scared’ (9)
and ‘Angry’ (11). 30 participants rated the emotion expressed by these
excerpts on our ‘emotion-face-clock’. By demonstrating how continuous
category selections (votes) changed over time, we were able to show that (1)
more than one emotion-face could be expressed by music at the same time and
(2) the emotion face that best portrayed the emotion the music conveyed could
change over time, and that the change could be attributed to changes in musical
structure.

Keywords: Emotion in music, continuous response, discrete emotions, time-
series analysis, film music.

1 Introduction

Research on continuous ratings of emotion expressed by music (that is,
rating the music while it is being heard) has led to improvements in
understanding and modeling music’s emotional capacity. This research
has produced time series models where musical features such as
loudness, tempo, pitch profiles and so on are used as input signals
which are then mapped onto emotional response data using least
squares regression and various other strategies [1-4].

One of the criticisms of self-reported continuous response however,
is the rating response format. During their inception in the 1980s and
1990s [5, 6] such measures have mostly consisted of participants rating
one dimension of emotion (such as the happiness, or arousal, or the
tension, and so on) in the music. This approach could be viewed as so
reductive that a meaningful conceptualization of emotion is lost. For

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
19-22 June 2012, Queen Mary University of London
All rights remain with the authors.



Schubert et al.

example, Russell’s [7, 8] work on the structure of emotion
demonstrated that a large amount of variance in emotion can be
explained by two fairly independent dimensions, frequently labeled
valence and arousal. The solution to measuring emotion continuously
can therefore be achieved by rating the stimulus twice (that is, in two
passes), once along a valence scale (with poles of the scale labeled
positive and negative), and once along an arousal scale (with poles
labeled active and sleepy) [for another multi-pass approach see 9]. In
fact, some researchers have combined these scales at right angles to
form an ‘emotion space’ so as to allow a good compromise between
reductive simplicity (the rating scale), and the richness of emotional
meaning (applying what were thought to be the two most important
dimensions in emotional structure simultaneously and at right angles)
[e.g. 10, 11,12 ].

The two dimensional emotion space has provided an effective
approach to help untangle some of the relations between musical
features and emotional response, as well as providing a deepening
understanding of how emotions ebb and flow during the unfolding of a
piece of music. However, the model has been placed under scrutiny on
several occasions. The most critical matter that is of concern in the
present research is theory and subsequent labeling of the emotion
dimensions and ratings. For example, the work of Schimmack [13, 14]
has reminded the research community that there are different ways of
conceptualizing the key dimensions of emotion, and one dimension
may have other dimensions hidden within it. Several researchers have
proposed three key dimensions of emotion [15-17]. Also, dimensions
used in the ‘traditional’ two dimensional emotion space may be hiding
one or more dimensions. Schimmack demonstrated that the arousal
dimension is more aptly a combination of underlying ‘energetic
arousal’ and ‘tense arousal’. Consider, for instance, the emotion of
‘sadness’. On a single ‘activity’ rating scale with poles labeled active
and sleepy, sadness will most likely occupy low activity (one would not
imagine a sad person jumping up and down). However, in a study by
Schubert [12] some participants consistently rated the word ‘sad’ in the
high arousal region of the emotion space (all rated sad as being a
negative valence word). The work of Schimmack and colleagues
suggests that those participants were rating sadness along a ‘tense
arousal’ dimension, because sadness does contain conflicting
information about these two kinds of arousal — high tension arousal but
low activity arousal.



Discrete Emotion Faces

Some solutions to the limitation of two dimensions are to have more
than two passes when performing a continuous response (e.g. valence,
tense arousal and activity arousal), or to apply a three dimensional GUI
with appropriate hardware (such as a three dimensional mouse).
However, in this paper we take the dilemma of dimensions as a point of
departure and apply what we believe is the first attempt to use a
discrete emotion response interface for continuous self-reported
emotion ratings.

Discrete emotions are those that we think of in day-to-day usage of
emotions, such as happy, sad, calm, energetic and so forth. They can
each be mapped onto the emotional dimensions discussed above, but
can also be presented as independent, meaningful conceptualizations of
emotion [18-22]. An early continuous self-reported rating of emotion
in music that demonstrated an awareness of this discrete structure was
applied by Namba et al. [23], where a computer keyboard was labeled
with fifteen different discrete emotions. As the music unfolded,
participants pressed the key representing the emotion that the music
was judged to be expressing at that time. The study has to our
knowledge not been replicated, and we believe it is because the
complexity of learning to decode a number of single letters and their
intended emotion-word meaning. It seems likely that participants
would have to shift focus between decoding the emotion represented on
the keyboard, or finding the emotion and then finding its representative
letter before pressing. And this needed to be done on the fly, meaning
that by the time the response was ready to be made, the emotion in the
music may have changed. The amount of training (about 30 minutes
reported in the study) needed to overcome this cognitive load can be
seen as an inhibiting factor.

Inspired by Namba et al’s pioneering work, we wanted to develop a
way of measuring emotional response continuously but one which
captured the benefits of discrete emotion rating, while applying a
simple, intuitive user interface.

2 Using discrete facial expressions as a response format

By applying the work of some of the key research of emotion in
music who have used discrete emotion response tools [24-26], and
based on our own investigation [27], we devised a system of simple,
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schematic facial expressions intended to represent a range of emotions
that are known to be evoked by music. Further, we wanted to recover
the topology of semantic relations, such that similar emotions were
positioned beside one another, whereas distant emotions were
physically more distant. This approach was identified in Hevner’s [28-
31] adjective checklist. Her system consisted of groups of adjectives,
arranged in a circle in such a way as to place clusters of words near
other clusters of similar meaning. For example, the cluster of words
containing ‘bright, cheerful, joyous ...” was adjacent to the cluster of
words containing ‘graceful, humorous, light...”, but distant from the
cluster containing the words ‘dark, depressing, doleful...”. Eventually,
the clusters would form a circle, from which it derived its alternative
names ‘adjective clock’ [32] and ‘adjective circle’ [31]. Modified
version of this approach, using a smaller number of words, are still in
use [33]. Our approach also used a circular form, but using faces
instead of words. Consequently, we named the layout an ‘emotion-
face-clock’. Literate and non-literate cultures have become adept at
speedy interpretation of emotional expression in faces [34, 35], making
them more suitable for emotion rating tasks than words. Further,
several emotional expressions are universal [36, 37] making the
reliance on a non-verbal, non-language specific format appealing [38-
40].

Selection of faces to be used for our response interface were based
on the literature of commonly used emotion expressions to describe
music [41], the recommendations made on a review of the literature by
Schubert and McPherson [42] but also such that the circular
arrangement was plausible. The faces selected corresponded roughly
with the emotions from top moving clockwise (see Fig. 1): Excited (at
1 o’clock), Happy (3), Calm (5), Sad (7), Scared (9) and Angry (11
o’clock), with the bottom of the circle separated by Calm and Sad. The
words used to describe the faces are selected for the convenience of the
researchers. Although a circle arrangement was used, a small gap
between the positive emotion faces and the negative emotion faces was
imposed, because a spatial gap angry and excited, and between calm
and sad reflected a semantic distance (Fig. 1). We did not impose our
labels of the emotion-face expressions onto the participants. Pilot
testing using retrospective ratings of music using the verbal expressions
are reported in Schubert et al. [27].
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3 Aim

The aim of the present research was to develop and test the emotion-
face-clock as a means of continuously rating the emotion expressed by
extracts of music.

4 Method

4.1 Participants

Thirty participants were recruited from a music psychology course
that consisted of a range of students including some specializing in
music. Self-reported years of music lessons ranged from O to 16 years,
mean 6.6 years (SD = 5.3 years) with 10 participants reporting no
music lessons (‘0 years). Ages ranged from 19 to 26 years (mean 21.5
years, SD = 1.7 years). Twenty participants were male.

4.2 Software realisation

The emotion-face-clock interface was prepared, and controlled by
MAX/MSP software, with musical extracts selected automatically and
at random from a predetermined list of pieces. Mouse movements were
converted into one of eight states: centre, one of the six emotions
represented by schematic faces, and ‘elsewhere’ (Fig. 1). The eight
locations were then stored in a buffer that was synchronized with the
music, with a sampling rate of 44.1kHz. Given the redundancy of this
sampling rate for emotional responses to music [which are in the order
of 1 Hz — see 43], down-sampling to 25Hz was performed prior to
analysis. The facial expressions moving around the clock in a
clockwise direction were Excited, Happy, Calm, Sad, Scared and
Angry. Note that the verbal labels for the faces are for the convenience
of the researcher, and do not have to be the same as those used by
participants. More important was that the expressions progressed
sequentially around the clock such that related emotions were closer
together than distant emotions, as described above. However, the
quality of our labels were tested against participant data using the
explicit labeling of the same stimuli in an earlier study [27].
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Continually move the mouse to the face(s) that best matches
the emotion the MUSIC IS EXPRESSING as quickly as possible.

Elsewhere

f

Centre

Fig. 1. Emotion-face-clock graphic user interface. This is a grayscale version. Face colours
were yellow shades for right three faces (Excited [bright yellow], Happy and Calm), red for
Angry, dark blue for Scared and light blue for Sad, based on [27]. Crotchet icon in Centre was
green when ready to play, and grayed out, opaque when excerpt was playing. Text in top two
lines provided instructions for the participant. White boxes, arrows and labels were not visible
to the participants. These indicate the regions used to determine the eight response categories.

4.3 Procedure

Participants were tested one at a time. The participant sat at the
computer display and wore headphones. After introductory tasks and
instructions, the emotion-face-clock interface was presented, with a
green icon (quaver) in the centre (Fig. 1). The participant was
instructed to click the green button to commence listening, and to track
the emotion that the music was expressing by selecting the facial
expression that best matched the response. They were asked to make
their selection as quickly as possible. When the participant moved the
mouse over one of the faces, the icon of the face was highlighted to
provide feedback. The participant was asked to perform several other
tasks. The focus of the present report is on continuous rating over time
of emotion that six extracts of music were expressing.
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4.4 Stimuli

Because the aim of this study is to examine our new continuous
response instrument, we selected six musical excerpts for which we had
emotion ratings made using tradition post-performance ratings scales
from a previous study [27]. The pieces were taken from Pixar animated
movies, based on the principle that the music would be written to
stereotypically evoke a range of emotions. The excerpts selected were
11 to 21 seconds long with the intention of primarily depicting each of
the emotions of the six faces on the emotion-face-clock. In our
reference to the stimuli in this report, they were labeled according to
their target emotion: Angry, Scared, Sad, Calm, Happy and Excited.
More information about the selected excerpts is shown in Table 1.
When referring to a musical stimulus the emotion label is capitalized
and italicised.

Table 1. Stimuli used in the study.

Stimulus code Film music excerpt Start time Duration of
(target emotion) within CD track excerpt (s)
(MM’SS elapsed)
Angry Up: 52 Chachki Pickup 00"53 17
Calm Finding Nemo: Wow 00"22 16
Excited Toy Story: Infinity and 00"15 16
Beyond
Happy Cars: McQueen and Sally 00"04 16
Sad Toy Story 3: You Got Lucky 01"00 21
Scared Cars: McQueen's Lost 00"55 11

5 Results and Discussion

Responses were categorized into one of eight possible responses (one
of the six emotions, the centre location, and any other space on the
emotion-face-clock labeled ‘elsewhere’ — see Fig. 1) based on mouse
positions recorded during the response to each piece of music. This
process was repeated for each sample (25 per second). Two main
analyses were conducted. First, the relationships between the collapsed
continuous ratings against rating scale results from a previous study
using the same stimuli, and then an analysis of the time series responses
for each of the six stimuli.
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5.1 Summary responses

In a previous study, 26 participants provided ratings of each of the
six stimuli used in the present study (for more details’, see [27] for
details) along 11 point rating scales from ‘O (not at all)’ to ‘10 (a lot)’.
The scales were labeled Angry, Scared, Sad, Calm, Happy and Excited.
No faces were used in the response interface for that study.

The continuous responses from the current study were collapsed so
that the number of votes a face received as the piece unfolded was
tallied, producing a proportional representation of faces that were
selected as indicating the emotion expressed by each face for a
particular stimulus. The plots of these results are shown in Fig. 2.
Take for example the responses made to the Angry excerpt. All
participants first ‘votes’ were for the ‘Centre’ category because they
had to click the icon at the centre of the emotion-face-clock to
commence listening. As participants decided which face represented
the emotion expressed, they moved the mouse to cover the appropriate
face. So, as the piece unfolded, at any given time, some of the 30
participants might have the cursor on the Angry face, while some on
the Scared face, and another who may not yet have decided remains in
the centre or has moved the mouse, but not to a face (‘elsewhere’).
With a sampling rate of 25 Hz it was possible to see how these votes
changes over time (the focus of the next analysis). At each sample, the
votes were tallied into the eight categories. Hence each sample had a
total of 30 votes (one per participant). At any sample it was possible to
determine whether participants were or were not in agreement about the
face that best represented the emotion expressed by the music.

The face by face tallies for each of these samples were accumulated
and divided by the total number of samples for the excerpt. This
provided a summary measure of the time-series to approximate the
typical response profile for the stimulus in question. These profiles are
reported in Fig. 2 in the right hand column. Returning to the Angry
example we see that participants spent most time on the Angry face,
followed by Scared and then the Centre. This suggests that the piece
selected indeed best expressed anger according to the accumulated
summary of the time series. The second highest votes belonging to the
Scared face can be interpreted as a ‘near miss’ because of all the
emotions on the clock, the scared face is semantically closest to the
Angry face, despite obvious differences (for a discussion, see [27]). In
fact, when comparing the accumulated summary with the post-
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performance rating scale profile (from the earlier study), the time series
produces a profile more in line with the proposed target emotion. The
post-performance ratings demonstrate that Angry is only the third
highest scored scale, after Scared and Excited. The important point,
however, is that Scared and Excited are located on either side of the
emotion-face-clock, making them the most semantically related
alternatives to angry of the available faces. For each of the other
stimuli, the contour of the profiles for post-performance ratings and
accumulated summary of continuous response are identical.

These profiles matches are evidence for the validity of the emotion-
face-clock because they mean that the faces are used to provide a
similar meaning to the emotion words used in the post-performance
verbal ratings. We can therefore be reasonably confident that at least
five of the faces selected can be represented verbally by the five verbal
labels we have used (the sixth — Anger, being confused occasionally
with Scared). The similarity of the profile pairs in Fig. 2 is also
indicative of the reliability of the emotion-face-clock because it more-
or-less reproduces the emotion profile of the post-performance ratings.

Two further observations are made about the summary data.
Participants spend very little time away from a face or the centre of the
emotion-face-clock (the elsewhere region is selected infrequently for
all six excerpts). While there is the obvious explanation that the six
faces and the screen centre occupy the majority of the space on the
response interface (see Fig. 1) the infrequent occurrence of the
Elsewhere category also may indicate that participants are fairly certain
about the emotion that the music is conveying. That is, when an
emotion face is selected by a participant, they are likely to believe that
to be the best selection, even if it is in disagreement with the majority
of votes, or with the a priori proposed target emotion. If this were not
the case, we might expect participants to hover in ‘no mans land’ of the
emotion-face-clock —Elsewhere and Centre.

The ‘no-mans-land’ response may be reflected by the accumulated
time spent on the centre category. As mentioned, time spent in the
centre category is biased because participants always commence their
responses from that region (in order to click the play button). The
centre category votes can therefore be viewed as indicating two kinds
of systematic responses: (1) initial response time and (2) response
uncertainty. Initial response time is the time required for a participant
to orient to the required task just as the temporally unfolding stimulus

11
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commences. The orienting process generally takes several seconds to
complete, prior to ratings becoming more ‘reliable’ [44-46]. So stimuli
in Figure 2 with large bars for ‘Centre’ may require more time before
an unambiguous response is made.

Target | Post-performance Number of participants
mean rating (0 to 10) selecting an emotion-face-
clock location, average
across all samples (N = 30)
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Fig. 2. Comparison of post performance ratings [from 27] (left column of charts) with sample
averaged continuous response face counts for thirty participants (right column of charts) for the
six stimuli, each with a target emotion shown in the leftmost column.
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The relatively large amount of time spent in the Centre for this piece
may, also, be an indicator of uncertainty of response. Well after a
typical orientation period has passed, for this excerpt, uncertainty in
rating remains (as will become clear in the next sub-section). The
Scared stimulus has the largest number of votes for the Centre location
(on average, at any single sample, eight out of thirty participants were
in the centre of the emotion-face-clock). Without looking at the time
series data, we may conclude that the Scared excerpt produced the least
‘confident’ rating, or that the faces provided were unable to produce
satisfactory alternatives for the participants.

Using this logic (long time spent in the Centre and Elsewhere), we
can conclude that the most confident responses were for those pieces
where accumulated time spent in the Centre and Elsewhere were the
lowest. The Calm stimulus had the highest ‘confidence’ rating (an
average of about 4 participants at the Centre or Elsewhere combined).
Interestingly, the Calm example also had the highest number of
accumulated votes for any single category (the target, Calm emotion)
— which was selected on average by 18 participants at any given time.

The analysis of summary data provides a useful, simple
interpretation of the continuous responses. However, to appreciate the
richness of the time-series responses, we now examine the time-series
data for each stimulus.

5.2 Continuous responses

Fig. 3 shows the plots of the stacked responses from the 30
participants at each sample, for each stimulus. The beginning of each
time series, thus, demonstrates that all participants commenced their
response at the Centre (the first, left-most vertical ‘line’ of each plot is
all black, indicating the Centre). By scanning for black regions for
each of the plots in Fig. 2 some of the issues raised in the accumulated
summary analysis, above, are addressed. We can see that the black and
grey disappears for the Calm plot after 6 seconds have elapsed. For
each of the other stimulus a small amount of doubt remains at certain
times — in some cases a small amount of uncertainty is reported
throughout (there are no samples in the Scared and Excited stimuli
where all participants have selected a face). Further, the largest area of
black and grey occurs in the Scared plot.

13



Schubert et al.

The time taken for ‘most’ participants to make a decision about the
selection of a first face is fairly stable across stimuli. Inspection of Fig.
3 reveals that in the range of 0.5 seconds through to 5 seconds most
participants have selected a phase. This provides a rough estimate of
the initial orientation time for emotional response using categorical data
(for more information™, see [44]).

Another important observation of the time-series of Fig. 3 is the ebb
and flow of face frequencies. In the summary analysis it was possible
to see when more than one emotion face was selected to identify the
emotion expressed by the music. However, here we can see when these
‘ambiguities’ occur. The Angry and Sad stimuli provide the clearest
examples of more than one dominant emotion. For the Angry excerpt,
the ‘Scared’ face is frequently reported in addition to Angry. And the
number of votes for the Scared face slightly increase toward the end of
the excerpt. Thus, it appears that the music is expressing two emotions
at the same time, or that the precise emotion was not available on the
emotion-face-clock.

The Sad excerpt appears to be mixed with Calm for the same reasons
(co-existence of emotions or precision of the measure). While the
Calm face received fewer votes than the Sad face, the votes for Calm
peak at around the 10" second (15 votes received over the time period
9.6 to 10.8s) of the Sad except. The excerpt is in a minor mode,
opening with an oboe solo accompanied by sustained string chords and
harp arpeggios. At around the 15" second (peaking at 18 votes over the
time period 15.0 to 15.64s) the number of votes for Calm face begin to
decrease and the votes for the Sad face peak. Hence, some participants
find the orchestration and arch shaped melody in the oboe more calm
than sad, until some additional information is conveyed in the musical
signal (at around the 14" second), they remain on Calm. At the 10"
second of this excerpt the oboe solo ends, and strings alone play, with
cello and violin coming to the fore, with some portamento (sliding
between pitches). These changes in instrumentation may have
provided cues for participants to make the calm to sad shift after a
delay of a few seconds [43].

Thus a plausible interpretation of the mixed responses is that
participants have different interpretations of the various emotions
expressed, and the emotion represented by the GUI faces. However,
the changes in musical structure are sufficient to explain a change in
response. What is important here, and as we have argued elsewhere, is
that the difference between emotions is (semantically) small [27], and
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that musical features could be modeled to predict the overall shift away
from calmness and further toward sadness in this example.

Angry Target Stimulus

[
60%
A%

2%

Scared Target Stimulus

Sad' Targct Sumulus s

0 1@ 14 168 18 0

01 2 3 4 5 & 7 B 9 10111213 14 1516
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01 2 3 456 7 B 9 10111213 14 15
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H Centre ™ Elsewhere B Angry ®Scared ®Sad ®Calm ®Happy Excited

Fig. 3. Time series plots for each stimulus showing stacked frequency of faces selected over
time (see Table 1 for duration on x-axis) for the 30 participants (y-axis), with face selected
represented by the colour code shown. Black and grey representing centre of emotion-face-
clock (where all participants commence continuous rating task) and anywhere else respectively.
Note that the most dominant colour (the most frequently selected face across participants and
time) match with the target emotion of the stimulus.
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6 Conclusions

In this paper we reported the development and testing of a categorical
response interface consisting of a small number of salient emotional
expressions upon which participants can rate emotions as a piece of
music or other stimulus unfolds. We developed a small set of key
emotional expression faces found in music research, and arranged them
into a circle such that they were meaningfully positioned in space, and
such that they resembled traditional valence-arousal rating scale
interfaces (positive emotions toward the right, high arousal emotions
toward the top). We called the response space an emotion-face-clock
because the faces progressed around a clock in such a way that the
expressions changed in a semantically related and plausible manner.

The interface was then tested using particular pieces that expressed
the emotions intended to represent each of the six faces. The system
was successful in measuring emotional ratings in the manner expected.
The post-performance ratings used in an earlier study had profile
contours that matched the profile contours of the accumulated summary
of continuous response in the new device for all but the Angry stimulus.
We took this as evidence for the reliability and validity of the emotion-
face-clock as a self-report continuous measure of emotion.

Continuous response plots allowed investigation of the ebb and flow
of ratings, demonstrating that for some pieces two emotions were
dominant (the target Angry and target Sad excerpts in particular), but
that the composition of the emotions changed over time, and that the
change could be attributed to changes in musical features.

Further analysis will reveal whether musical features can be used to
predict categorical emotions in the same way that valence/arousal
models do (for a review, see [4]), or whether six emotion faces is
optimal. Given the widespread use of categorical emotions in music
metadata [47, 48], the categorical, discrete approach to measuring
continuous emotional response is bound to be a fruitful tool for
researchers interested in automating emotion in music directly into
categorical representations.
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Abstract. This paper reports on an experiment into musical expressivity in
which participants were asked to rate a number of short music pieces along
three dimensions correlated with emotional states; valence, power and freedom.
Results showed positive correlations between valence and the musical variables
of dissonance and noise saturation, as well as between power and the musical
variables of note sustain, tempo and reverb. More equivocal results were found
for the dimension of freedom, and the musical variable of pitch height.
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1 Introduction

Continuous rating studies, in which participants are tasked to provide temporally
continuous judgements of a phenomenon, are now frequently used to investigate
correlations between musical features and emotional states [9], [11], [14], [18], (see
also [6], [15] for reviews). Such studies have a distinct advantage over those which
seek only summary judgements of expressive content since it is clear that the
temporally varying nature of music is one of the main reasons it excels in the
expression of emotions, and subtle variations as pieces progress can have dramatic
effects on our sense of emotional content. It is a further advantage to utilize
judgements of specific aspects of emotions, rather than simple emotion labels (i.e.
‘happy’, ‘sad’) both because such emotion labels are too general to guarantee their
common understanding amongst multiple participants, and because pieces of music
do not only become more or less sad, but reveal inflections on those emotions in
much more subtle ways [17], [10]. As such the current study extends the continuous
ratings approach to some new musical and emotional variables.

2 Emotional Dimensions

Typically continuous rating studies employ a model of emotions based on the two
dimensions of valence and arousal, made popular by James Russell and Lisa Barrett
[1], [13]. This model is widely recognized by psychologists and other scientists
working in emotion related studies as a useful way to quantify emotions. Yet while
we agree that the model is convenient to use, we note that it has several conceptual
and practical limitations that encourage the use of alternative models, at least as a
basis of comparison. Fontaine et al. [4] use factor analysis to show that at least 4
dimensions (which they label valence, arousal, power and certainty) must be used to
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differentiate widely used emotion features (such as behavioural and feeling reports),
while Cochrane [2] emphasizes that the dimensions of arousal and valence are not
independent of one another, and therefore restrict the affective ‘space’ that can be
effectively mapped. Moreover, valence and arousal are not capable of distinguishing
even some of the most common negative emotions such as anger, panic and disgust.

Often a third dimension of ‘power’ or ‘control’ is recognized in emotion theories,
and so this dimension has been used here as an alternative to arousal. Cochrane [2]
also advocates the use of the dimension of ‘freedom’, since it is ambiguous whether
power refers to a state of great strength or energy, or the ability to do what one wants.
In common emotion episodes such as anger, these two aspects can be distinguished,
since anger is typically a state of great strength or energy, while also involving a
sense of constraint. In contrast, an emotion like joy may involve a sense of both great
power and freedom. As such a dimension of freedom, specified here as the openness
of the world to one’s goals, is an important aspect of emotional experience and
behaviour and may be usefully applied to our judgements of musical expressivity. At
any rate, the use of additional dimensions against which to rate musical samples helps
to provide a control for ratings along more popularly used dimensions.

Overall then, three dimensions of valence, power and freedom were employed in
this study. Care was also taken to ensure that participants are provided with clear
definitions of these dimensions (reproduced in table 1 below).

Table 1. Definitions of the emotion dimensions used in this study, as provided to participants.!

Dimension Definition provided

Valence By ‘positive’ and ‘negative’ character we mean whether the
music sounds like a good/bad or pleasant/unpleasant feeling or
seems to go with a situation that one would approach or avoid.

Freedom By ‘free’ we mean whether the music sounds like a feeling of
being able to do things or being open to the world as opposed to
'constrained' where one feels blocked or prevented from acting
or shut off from the world.

Power By ‘powerful’ and ‘weak’ we mean whether the music sounds
like a feeling of energy/lack of energy or strength/weakness or
seems to go with a situation where one is powerful or weak.

3 Method

A flash-based programme was developed by Olivier Rosset, enabling participants to
provide continuous ratings of a short piece of music along a single specified
dimension. Such a single dimension rating system contrasts with that of Nagel [12]
and others, which tasks participants to rate two dimensions simultaneously, but which
may not be practical when employing independent and non-standard dimensions, as in
this study. Use of flash also allows participants to perform the study online. In this
case participants used the computer mouse to adjust the vertical height of a line which

! These definitions were also translated into French by Kim Torres Eliard, though in the end
only 3 francophone participants were enlisted. The translated text is available on request.
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scrolled automatically across the page from left to right as the music played, and
which was sampled every 250ms/4Hz. Seeing the line one produces affords the
participant a clear sense of their overall judgement of the piece.

Meanwhile, a number of short pieces of music (typically around 30 seconds in
length) were composed by Tom Cochrane using MIDI. These pieces were designed to
systematically adjust one musical variable such as tempo or reverb while other
variables were controlled. As much as possible, musical variables were adjusted in a
linear fashion, resulting in a simple increase or decrease of the variable overall. Yet it
should be noted that some variables, such as harmonic dissonance, can only be
adjusted in a ‘step-wise’ fashion, while other variables such as reverb, though
appearing to increase or decrease in a linear fashion within the confines of the MIDI
sequencer, need not necessarily be perceived as such by participants.

For each musical variable, 3 pairs of pieces were provided; where as much as
possible, a pair would preserve melodic and harmonic material while the desired
musical variable was increased or decreased. Then between the 3 pairs of pieces, care
was taken to vary the style, timbre and tonality of the music. For instance, one of the
set may be based on a classical style melody, while another would employ a
minimalist electronica style. Again (with the exception of pieces testing variances in
harmonic dissonance) one piece may be largely in a minor key while another was in a
major key, and others in more ambiguous tonalities. Such variation helps to justify the
claim that the variables explored are capable of producing expressive variations that
are independent of the specific musical context.

In all, 54 short music pieces were composed, designed to test 9 different musical
variables. Each of these pieces were then rated on each of the three emotional
dimensions of concern in this study. Since rating each sample on each dimension
would be a prohibitively time-consuming and monotonous task, participants were
randomly split into 3 groups. Each group would then rate 18 of the pieces on one
dimension, followed by 18 on the second, then 18 on the third. The order in which
pieces were presented within groups was randomized, as well as the order of
dimensions ranked (though each dimension was rated as a block, in order for
participants to be maximally aware of the nature of the dimension being judged). As
mentioned above, very specific definitions for each dimension were provided, which
were displayed throughout at the top of the rating window. Participants also had an
opportunity to practice the rating task prior to each dimensional group.

Participants were recruited via online mailing lists such as <music-
ir@listes.ircam.frm>, <auditory@lists.mcgill.ca> and online psychology forums such
as ClinPsy.org.uk, in addition to psychology and philosophy students at Queen’s
University Belfast. This ensured a good mixture between musical experts and non-
experts. The study was carried out between April and May 2011. Participants were
not paid, and the results were anonymized. In total 50 participants were recruited,
which when split into 3 groups ensured that each sample was rated on each dimension
by at least 16 people.

3.1 Measuring Harmonic Dissonance

While most of the musical variables used in this study could be extracted in a fairly
straightforward manner from the MIDI sequencer programme. Measuring the degree
of harmonic dissonance in a piece requires a much more complex procedure of music
information retrieval. In this case, MIDI note information was formatted using
MATLAB to show all the notes simultaneously playing at any given moment. Each
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interval between these notes was then attributed a dissonance score taken from the
measure of sensory dissonance adapted for MATLAB by William Sethares [16]. This
dissonance score was then multiplied by an additional dissonance score for each
individual note playing at a given time. This additional individual-note measure is
necessary because the sense of harmonic dissonance in an interval is relative to where
that interval lies in relation to the tonic. For instance, in the key of C major, the major
third between C and E natural is significantly less dissonant than the major third
between Eb and G. This second dissonance score was adapted from the statistical
frequency in which different tones appear in musical works, taken from Huron [7]
based on the assumption justified by Huron that our sense of how well a given tone
fits with the harmonic context determines the frequencies with which that tone tends
to be employed in musical works.

Curve of Sensory Dissonance
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Fig. 3. Sensory Dissonance Curve from William Sethares [16]. The curve shows the level of
perceived ‘roughness’ in tones relative to a fundamental frequency (in this case 250Hz). The
relation of each tone to the fundamental frequency is expressed as a ratio. So in this case the
number 2 on the x axis represents the octave above the fundamental, where 3 represents the
fifth above that.

A further variable that was predicted in this study was that levels of harmonic
dissonance would be correlated with the sense of emotional valence, but in a non-
linear fashion. In particular, it was predicted that the technically most consonant
intervals (e.g. simple octave) would be regarded as neutral in valence. The sense of
valence should then trace an inverted U or Wundt curve, as dissonance approaches
and then recedes from an optimally pleasant sense of harmony (say around a rich
major chord). Theoretically, as dissonance moves towards an extreme where it
becomes indistinguishable from noise, the sense of valence may again move back
towards a neutral level. However, the kinds of tonal intervals used in this study would
never approach that degree of complexity. As such, once a linear measure of
dissonance was discerned for a piece of music, this was then transformed along the
first five sixths of a sine curve- where the neutral starting point is assigned to sineQ
and the maximal dissonance is assigned to sinel.572 i.e. 5 radians, the lowest point in
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the sine curve. The difference in these two measures of dissonance are shown in
figures 2 and 3 below, where it can be clearly seen that the transformed dissonance
measure closely fits participants’ judgements of valence in one of the pieces.

diss+aLinG1.mp3
1.5 T T

negative-—positive
=]
L
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Fig. 2. Dissonance variable (dotted line) plotted linearly against participant ratings for valence
(solid line). Both variables are normalized. Figure shows that as dissonance increases, ratings
generally move towards the extreme negative, giving a fairly good negative correlation between
the two variables.

diss+aSinG1.mp3
T

negative-—positive
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Fig. 3. Dissonance variable (dotted line) transformed along values of sine, where the
neutral starting point is assigned to sine0 and the maximal dissonance is assigned to
sinel.572 i.e. 5 radians, the lowest point in the sine curve.
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4 Results

Table 2 below summarizes the results of the rating study for six musical variables of
particular interest: harmonic dissonance, noise saturation, pitch height, note sustain,
reverb and tempo. For each dimension, the six results are split into those in which the
musical variable is increasing (e.g. greater dissonance) and those in which it is
decreasing.

Table 2. Correlations (to two decimal places) between each musical variable, and
each emotion dimension for 6 separate pieces of music (36 in total).

Music . . Correlations
. Dimension X .
Variable Variable Up Variable Down
Valence? 0.95 0.77 0.82 -0.18  -0.37  -0.59
Harmonic Power 056 -0.76 021 | -090 0.77  -0.57
Dissonance
Freedom -0.71  -0.74 -0.42| -047 0.58 0.80
Valence -0.76  -0.89 -0.92| -047 -047 -0.22
Noise Power 0.97 -0.72  0.98 -0.80  0.64 0.30
Saturation

Freedom 0.10 -0.88  -0.13| -0.53 -0.84 0.02

0.96 -0.31  0.92 -0.08 -0.55 -0.53

Valence
Pitch {Power 007 -070 0.76| -090 095 029

Height
Freedom -0.64 -0.70 096 | 0.04 -091 -0.67
Valence -0.90 0.80 041 097 -099 -0.16
Note Sustain Power 0.79 0.80 0091 0.93 -0.43 0091
Freedom -0.95  0.81 0.58 0.98 -0.82  0.73
Valence -091  -097 0.85 0.93 0.91 -0.97
Reverb Power -0.46  0.63 0.63 -0.89  -0.68 -0.96
Freedom -0.37  -094 042 092 090 -0.85
Valence -0.73  -0.84 092 0.91 034  -0.11
Tempo Power -0.49  0.68 0.68 099 090 094
Freedom -0.96 -0.84 098 0.89  0.92 -0.64

The correlations between dimensions and variables were then averaged for each set
of 3 pieces to reveal which variables are most consistently correlated with which
emotion dimensions.

2 The dissonance measure here has been transformed along the values of sine, as detailed in
section 3.1 above.
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Table 3. Best averaged correlations (greater than +/- 0.8) across 3 pieces between musical
variables and emotion dimensions. Correlations are shown to 3 decimal places.

Music Variable Up/Down?  Dimension  Correlation  Significance
Harmonic Dissonance ~ Up Valence 0.844 P<0.00001
Noise Saturation Up Valence -0.858 P<0.00001
Reverb Down Power -0.842 P<0.00001
Note Sustain Up Power 0.836 P<0.00001
Tempo Down Power? 0.946 P<0.00001

5 Discussion

The results show good correlations between dissonance, noise saturation and the
dimension of valence, and between tempo, note sustain, reverb and the dimension of
power. The connection between valence and dissonance replicates the findings of
several other studies such as [3], [5] and [8] but also adds that the dissonance measure
should be adjusted in a non-linear fashion. The expression of valence is further
extended to the closely related variable of noise saturation. This is a plausible result
since both musical features provide a sense of sensory roughness. Meanwhile, an
increase in the sense of power is correlated with the decrease of reverb and the
increase of note sustain. Reducing reverb results in a ‘sharper’ and ‘closer’ sound that
may be psychologically associated with greater strength or energy,* while the increase
of note sustain is a factor of loudness, that has already been associated with greater
arousal [3]. Again, the correlation of a decrease in tempo with a decrease in power
makes sense as a psychological connection between energy levels and one’s speed of
movement.

Ratings on the freedom dimension only produced good correlations on single
pieces, and not as an average of three pieces in a set. In particular, while reverb was
predicted to effect the sense of freedom, we see in table 2 that when reverb was
decreasing, participants only agreed that it afforded a sense of greater constraint in
two of the set of three, and they judged significantly in the opposite direction for the
third piece. However, we also see that in some pieces of music, a significant rating for
freedom is provided that is similar across both the increase and the decrease of the
tested musical variable, indicating that some other musical variable in these pieces is
consistently affecting the sense of freedom. These pieces are the second ‘noise
saturation’ piece and to a lesser extent the second ‘pitch height’ piece. These pieces
are both made from highly similar musical material which is slow and in a minor key-
resulting in a fairly ‘sad’ sounding piece overall. This connection between the sense
of freedom and sad sounding music would be worth investigating further. It was also
noted that several pieces characterized by a high level of repetition resulted in low

3 Note: as tempo goes down, power also goes down.
4 Note that increased reverb can make a sound seem quieter, though as much as possible this
possibility was controlled for in the composition of the reverb-varying pieces.
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judgements of freedom, however these results were not very consistent. Again, it
would be worth more systematically investigating a possible connection between the
degree of repetition and the sense of freedom.

We also did not find strong correlations between pitch height and any emotion
dimension. This musical variable was predicted to correlate with valence, but we see
significant results only for two of the three pieces in the set. The most likely cause of
this is that the second pitch height varying piece is in a minor key, and this sense of
tonality probably overwhelmed any positive effect on valence that a rise in pitch may
have achieved. The conflict between musical variables in this manner should also be
more closely examined in future studies.

It is particularly notable that as a group, participants did not generally agree on the
emotional significance of a musical variable where that variable was adjusted in both
directions. For instance, where the increase in dissonance was widely agreed to result
in a more ‘negative’ sound, the decrease of dissonance shows more confused results
(in this case, one of the 3 pieces did not show a good correlation). Naturally, the fact
that an average of the correlations across all judgements on a dimension, regardless of
the direction of change, could not generally be obtained, must constrain any bald
assertion that a certain musical feature goes with a certain emotion dimension. It is
also possible that participants take time to adjust when a piece begins in a very
dissonant mode, and only judge a mild sense of ‘relief” when that dissonance is
gradually removed. More generally however, it may be that adjustments in certain
musical features are just more noticeable when they occur in one specific dimension.
It would be worthwhile to test the above ‘best’ correlations in more detail, to explore
more fluctuating levels in these musical variables within a longer piece of music.

Finally, it should be noted that while some good results were achieved in this
study, there were a few limitations inherent to the experimental design. Naturally, a
greater number of music pieces would enable a more robust measure of the dimension
of concern. More importantly, listeners only had the chance to rate each piece once.
While this would ensure a fresh response, it is not necessarily contrary to good
judgements of expressive content to hear a piece over several times, and indeed to
have the chance to return to one’s judgement after hearing other examples.

Acknowledgments. This study was made possible by support for Tom Cochrane
from the Swiss National Science Foundation, grant PBSKP1-130854 ‘The Mood
Organ: Putting Theories of Musical Expression into Practice’.
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Abstract. ‘Emotion in Motion’ is an experiment designed to understand the
emotional reaction of people to a variety of musical excerpts, via self-report
questionnaires and the recording of electrodermal activity (EDA) and heart rate
(HR) signals. The experiment ran for 3 months as part of a public exhibition,
having nearly 4000 participants and over 12000 listening samples. This paper
presents the methodology used by the authors to approach this research, as well
as preliminary results derived from the self-report data and the physiology.

Keywords: Emotion, Music, Autonomic Nervous System, ANS, Physiological
Database, Electrodermal Activity, EDR, EDA, POX, Heart Rate, HR, Self-
Report Questionnaire.

1 Introduction

‘Emotion in Motion’ is an experiment designed to understand the emotional reactions
of people during music listening, through self-report questionnaires and the recording
of physiological data using on-body sensors. Visitors to the Science Gallery, Dublin,
Ireland were asked to listen to different song excerpts while their heart rate (HR) and
Electrodermal Activity (EDA) were recorded. The songs were chosen randomly from
a pool of 53 songs, which were selected to elicit positive emotions (high valence),
negative emotions (low valence), high arousal and low arousal. In addition to this,
special effort was made in order to include songs from different genres, styles and
eras. At the end of each excerpt, subjects were asked to respond to a simple
questionnaire regarding their assessment of the song, as well as how it made them
feel.

Initial analysis of the dataset has focused on validation of the different
measurements, as well as exploring relationships between the physiology and the self-
report data, which is presented in this paper.

Following on from this initial work we intend to look for correlations between
variables and sonic characteristics of the musical excerpts as well as factors such as
the effect of song order on participant responses and the usefulness of the Geneva
Emotional Music Scale [1] in assessing emotional responses to music listening.

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
19-22 June 2012, Queen Mary University of London
All rights remain with the authors.
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1.1 Music and Emotion

Specificity of musical emotions vs. ‘basic’ emotions. While the field of emotion
research is far from new, from Tomkins theory of ‘discrete’ emotions [2] or Ekman’s
[3] studies on the ‘universality’ of human emotions to the fMRI enabled
neuroimaging studies of today [4], there is still debate about the appropriateness of
the existing ‘standard’” emotion models to adequately describe emotions evoked
through musical or performance related experiences. It has been argued that many of
the ‘basic’ emotions introduced by Ekman, such as anger or disgust, are rarely (if
ever) evoked by music and that terms more evocative of the subtle and complex
emotions engendered by music listening may be more appropriate [5]. It is also
argued that the triggering of music-related emotions may be a result of complex
interactions between music, cognition, semantics, memory and physiology as opposed
to a direct result of audio stimulation [6, 7]. For instance a given piece of music may
have a particular significance for a given listener e.g. it was their ‘wedding song’ or is
otherwise associated with an emotionally charged memory.

While there is still widespread disagreement and confusion about the nature and
causes of musically evoked emotions, recent studies involving real-time observation
of brain activity seem to show that areas of the brain linked with emotion (as well as
pleasure and reward) are activated by music listening [8]. Studies such as these would
seem to indicate that there are undoubtedly changes in physiological state induced by
music listening, with many of these correlated to changes in emotional state.

It is also important to differentiate between personal reflection of what emotions
are expressed in the music, and those emotions actually felt by the listener [9]. In the
study presented on this paper we specifically asked participants how the music made
them feel as opposed to any cognitive judgments about the music.

During the last few decades of emotion research, several models attempting to
explain the structure and causes of human emotion have been proposed. The ‘discrete’
model is founded on Ekman’s research into ‘basic’ emotions, a set of discrete
emotional states that he proposes are common to all humans; anger, fear, enjoyment,
disgust, happiness, sadness, relief, etc. [10].

Russell developed this idea with his proposal of an emotional ‘circumplex’, a two
or three axis space (valence, arousal and, optionally, power), into which emotional
states may be placed depending on the relative strengths of each of the dimensions,
i.e. states of positive valence and high arousal would lead to a categorization of ‘joy’.
This model allows for more subtle categorization of emotional states such as
‘relaxation’ [11].

The GEMS scale [1] has been developed by Marcel Zentner’s team at the
University of Zurich to address the perceived issue of emotions specifically invoked
by music, as opposed to the basic emotion categories found in the majority of other
emotion research. He argues that musical emotions are usually a combination of
complex emotions rather than easily characterised basic emotions such as happiness
or sadness. The full GEMS scale consists of 45 terms chosen for their consistency in
describing emotional states evoked by music, with shorter 25 point and 9 point
versions of the scale. These emotional states can be condensed into 9 categories
which in turn group into 3 superfactors: vitality, sublimity and unease. Zentner also
argues that musically evoked emotions are rare compared to basic/day-to-day
emotions and that a random selection of musical excerpts is unlikely to trigger many
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experiences of strong musically evoked emotions. He believes that musical emotions
are evoked through a combination of factors which may include the state of the
listener, the performance of the music, structures within the music, and the listening
experience [5].

Lab vs. Real World. Many previous studies into musically evoked emotions have
noted the difficulty in inducing emotions in a lab-type setting [12, 13], far removed
from any normal music listening environment. This can pose particular problems in
studies including measurements of physiology as the lab environment itself may skew
physiological readings [14]. While the public experiment/installation format of our
experiment may also not be a ‘typical’ listening environment, we believe that it is
informal, open and of a non-mediated nature, which at the very least provides an
interesting counterpoint to lab-based studies, and potentially a more natural set of
responses to the stimuli.

1.2 Physiology of Emotion

According to Bradley and Lang, emotion has "almost as many definitions as there
are investigators", yet "an aspect of emotion upon which most agree, however, is that
in emotional situations, the body acts. The heart pounds, flutters stops and drops;
palms sweat; muscles tense and relax; blood foils; faces blush, flush, frown, and
smile" [15], page 581. A plausible explanation for this lack of agreement among
researchers is suggested by Cacioppo et al. in [16], page 174. They claim that
"...language sometimes fails to capture affective experiences - so metaphors become
more likely vehicles for rendering these conscious states of mind", which is coherent
with the etymological meaning of the word emotion; it comes from the Latin movere,
which means to move, as by an external force.

For more than a century, scientists have been studying the relationship between
emotion and its physiological manifestation. Analysis and experimentation has given
birth to systems like the polygraph, yet it has not been until the past two decades, and
partly due to improvements and reduced costs in physiological sensors, that we have
seen an increase in emotion recognition research in scientific publications [17]. An
important factor in this growth has been responsibility of the Affective Computing
field [18], interested in introducing an emotion channel of communication to human
computer interaction.

One of the main problems of emotion recognition experiments using physiology is
the amount of influencing factors that act on the Autonomic Nervous System (ANS)
[19]. Physical activity, attention and social interaction are some of the external factors
that may influence physiological measures. This has led to a multi-modal theory for
physiological differentiation of emotions, where the detection of an emotional state
will not depend on a single variable change, but in recognizing patterns among
several signals. Another issue is the high degree of variation between subjects and
low repeatability rates, which means that the same stimulus will create different
reactions in different people, and furthermore, this physiological response will change
over time. This suggests that any patterns among these signals will only become
noticeable when dealing with large sample sizes.
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2 Methodology

2.1 Experimental Design

The aim of this study is to determine what (if any) are the relationships between the
properties of an excerpt of music (dynamics, rhythm, emotional intent, etc.), the self-
reported emotional response, and the ANS response, as measured through features
extracted from EDA and HR. In order to build a large database of physiological and
self-report data, an experiment was designed and implemented as a computer
workstation installation to be presented in public venues. The experiment at the
Science Gallery — Dublin! lasted for three months (June-August 2010), having nearly
4000 participants and over 12000 listening samples. The music selection included in
its 53 excerpts contains a wide variety of genres, styles and structures, which, as
previously mentioned, were selected to have a balanced emotional intent between
high and low valence and arousal.

To be part of the experiment, a visitor to the Science Gallery was guided by a
mediator to one of the four computer workstations, and then the individual followed
the on-screen instructions to progress through the experiment sections (see Fig. 1 (b)).
These would first give an introduction to the experiment and explain how to wear the
EDA and HR sensors. Then, the participant would be asked demographic and
background questions (e.g. age, gender, musical expertise, music preferences, etc.).
After completing this section, the visitor would be presented with the first song
excerpt, which was followed by a brief self-report questionnaire. The audio file is
selected randomly from a pool of songs divided in the four affective categories. This
was repeated two more times, taking each music piece from a different affective
category, so each participant had a balanced selection of music. The visitor was then
asked to choose the most engaging and the most liked song from the excerpts heard.
Finally, the software presented the participant plots of his or her physiological signals
against the audio waveform of the selected song excerpts. This was accompanied with
a brief explanation of what these signals represent.

Software. A custom Max/MSP? patch was developed which stepped through the
different stages of the experiment (e.g. instructions, questionnaires, song selection,
etc.) without the need of supervision, although a mediator from the gallery was
available in case participants had any questions or problems. The software recorded
the participants’ questions and physiological data into files on the computer, as well
as some extra information about the session (e.g. date and time, selected songs, state
of sensors, etc.). All these files were linked with a unique session ID number which
was later used to build the database.

Sensors and Data Capture. MediAid POX-OEM M15HP? was used to measure HR
using infra-red reflectometry, which detects heart pulse and blood oxygenation. The
sensor was fitted by clipping on to the participant’s fingertip as shown in Fig. 1 (a).

! http://www.sciencegallery.com/
2 http://cycling74.com/products/max/
3 http://www.mediaidinc.com/Products/M15HP_Engl.htm
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(a) (b)
Fig. 1. (a) EDA and HR Sensors. (b) Participants during ‘Emotion in Motion’ experiment.

To record EDA, a sensor developed by BioControl Systems was utilized*. This
provided a continuous measurement of changes in skin conductivity. Due to the large
number of participants, we had to develop a ‘modular’ electrode system that allowed
for easy replacement of failed electrodes.

In order to acquire the data from the sensors, an Arduino® microcontroller was used
to sample the analogue data at 250 Hz and to send via serial over USB
communication to the Max/MSP patch. The code from SARCduino® was used for this
purpose. For safety purposes the entire system was powered via an isolation
transformer to eliminate any direct connection to ground. Full frequency response
closed-cup headphones with a high degree of acoustic isolation were used at each
terminal, with the volume set at a fixed level.

Experiment Versions. During the data collection period, variations were made to the
experiment in order to correct some technical problems, add or change the songs in
the pool, and test different hypothesis. All of this is annotated in the database. For
example, at the beginning participants were asked to listen to four songs in each
session, later this was reduced to three in order to shorten the duration of the
experiment. The questionnaire varied in order to test and collect data for different
questions sets (detailed below), which were selected to compare this study to other
experiments in the literature (e.g. the GEMS scales), analyse the effect of the
questions in the physiology by running some cases without any questions, and also
collect data for our own set of questions. The results presented in this paper are
derived from a portion of the complete database with consistent experimental design.

Scales and Measures.

LEMtool The Layered Emotion Measurement Tool (LEMtool) is a visual
measurement instrument designed for use in evaluating emotional responses to/with
digital media [20]. The full set consists of eight cartoon caricatures of a figure
expressing  different emotional states (Joy/Sadness, Desire/Disgust,

4 http://infusionsystems.com/catalog/product_info.php/products_id/203
5 http://www.arduino.cc
¢ http://www.musicsensorsemotion.com/2010/03/08/sarcduino/
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Fascination/Boredom, Satisfaction/Dissatisfaction) through facial expressions and
body language. For the purposes of our experiment we used only the
Fascination/Boredom images positioned at either end of a 5 point Likert item in which
participants were asked to rate their levels of ‘Engagement’ with each musical
excerpt.

SAM — Self Assessment Mannekin. The SAM 1is a non-verbal pictorial assessment
technique, designed to measure the pleasure, arousal and dominance associated with a
person’s affective response to a wide range of stimuli [21]. Each point on the scale is
represented by an image of a character with no gender or race characteristics, with 3
separate scales measuring the 3 major dimensions of affective state; Pleasure,
Arousal, and Dominance. On the Pleasure scale the character ranges from smiling to
frowning, on the Arousal scale the figure ranges from excited and wide eyed to a
relaxed sleepy figure. The Dominance scale shows a figure changing in size to
represent feelings of control over the emotions experienced.

After initial pilot tests we felt that it was too difficult to adequately explain the
Dominance dimension to participants without a verbal explanation so we decided to
use only the Pleasure and Arousal scales.

Likert Scales. Developed by the psychologist Rensis Likert [22], these are scales in
which participants must give a score along a range (usually symmetrical with a mid-
point) for a number of items making up a scale investigating a particular
phenomenon. Essentially most of the questions we asked during the experiment were
Likert items, in which participants were asked to rate the intensity of a particular
emotion or experience from 1 (none) to 5 (very strong) or bipolar version i.e. 1
(positive) to 5 (negative).

GEMS — Geneva Emotional Music Scale. The 9 point GEMS scale [1] was used to ask
participants to rate any instance of experiencing the following emotions: Wonder,
Transcendence, Tenderness, Nostalgia, Peacefulness, Energy, Joyful activation,
Tension, and Sadness. Again, they were asked to rate the intensity with which they
were felt using a 5 point Likert scale.

Tension Scale. This scale was drafted by Dr. Roddy Cowie of QUB School of
Psychology. It is a 5 point Likert scale with pictorial indicators at the Low and High
ends of the scale depicting a SAM-type mannekin in a ‘Very Relaxed’ or ‘Very
Tense’ state.

Chills Scale. This was adaptation from the SAM and featured a 5 point Likert scale
with a pictorial representation of a character experiencing Chills / Shivers / Thrills /
Goosebumps (CSTG), as appropriate, above the scale. The CSTG questions of the
first version of the experiments were subsequently replaced with a single chills
measure/question. For the purposes of the statistical analysis, the original results were
merged using the mean to give a composite CSTG metric. This process was validated
for consistency using both factor analysis and scale reliability test (Cronbach’s Alpha
of 7.83).
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2.2 Song selection and description.

The musical excerpts used in the experiment were chosen by the researchers using
several criteria: most were selected on the basis of having been used in previous
experiments concerning music and emotion, while some were selected by the
researchers for their perceived emotional content. All excerpts were vetted by the
researchers for suitability. As far as possible we tried to select excerpts without lyrics,
or sections in which the lyrical content was minimal’.

Each musical example was edited down to approximately 90 seconds of audio. As
much as possible, edits were made at ‘musically sensible’ points i.e. the end of a
verse/chorus/bar. The excerpts then had their volume adjusted to ensure a consistent
perceived level across all excerpts. Much of the previous research into music and
emotion has used excerpts of music of around 30 seconds which may not be long
enough to definitely attribute physiological changes to the music (as opposed to a
prior stimulus). We chose 90 seconds duration to maximize the physiological changes
that might be attributable to the musical excerpt heard. Each excerpt was also
processed to add a short (< 0.5 seconds) fade In/Out to prevent clicks or pops, and 2
seconds of silence added to the start and end of each sound file. We also categorized
each song according to the most dominant characteristic of its perceived affective
content: Relaxed = Low Arousal, Tense = High Arousal, Sad=Low Valence, Happy =
High Valence. Songs were randomly selected from each category pool every time the
experiment was run with participants only hearing one song from any given category.

2.3 Feature extraction from physiology and database built

Database built. Once the signals and answer files were collected from the experiment
terminals, the next step was to populate a database with the information of each
session and listening case. This consisted in several steps, detailed below.

First, the metadata information was checked against the rest of the files with the
same session ID number for consistency, dropping any files that had a wrong
filename or that were corrupted. Subsequently, and because the clocks in each
acquisition device and the number of samples in each recorded file can have small
variations, the sample rates (SR) of each signal file were re-calculated. Moreover,
some files had very different number of samples, which were detected and discarded
by this process. To calculate the SR of each file, a MATLAB script counted the
number of samples of each file, and obtained the SR using the duration of the song
excerpt used in that recording. Two conditions were tested: a) that the SR was within
an acceptable range of the original programmed SR (acquisition device) and b) that
the SR did not present more than 0.5% variation over time. After this stage, the
calculated SR was recorded as a separate variable in the database.

Finally, the data from each song excerpt was separated from its session and copied
into a new case in the database. This means that each case in the database contains
variables with background information of the participant, answers to the song
questionnaire, and features extracted from the physiological signals, as well as

7 The full list of songs used in the experiment may be found at
http://www.musicsensorsemotion.com/demos/EmotionlnMotion_Songs Dublin.pdf
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metadata about the session (experiment number, SR, order in which the song was
heard, terminal number, date, etc.).

EDAtool and HRtool®. Two tools developed in MATLAB were used to extract
features from the physiological data: EDAtool and HRtool. Extraction of features
included detection and removal of artefacts and abnormalities in the data. The output
from both tools consisted of the processed features vectors and an indication of the
accuracy of the input signal, which is defined as the percentage of the signal which
did not present artefacts. This value can be utilized later to remove signals from the
database that fall below a specified confidence threshold.

EDAtool. EDAtool is a MATLAB function developed to pre-process the EDA signal.
Its processing includes the removal of electrical noise and the detection and
measurement of artefacts. Additionally, it separates the EDA signal into phasic and
tonic components (please refer to [23] for a detailed description of EDA). Fig. 2
shows an example of the different stages of the EDAtool.
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Fig. 2. Stages of the EDAtool on a Skin Conductance signal. The top plots show the original
signal (blue) and the low-passed filtered signal (red), which removes any electrical noise. The
next plots show the artefact detection method, which identifies abrupt changes in the signal
using the derivative. Fig. 2 (a) shows a signal above the confidence threshold used in this
experiment, while signal in Fig. 2 (b) would be discarded. The 3™ row from the top shows the
filtered signals with the artefacts removed. The bottom plots show the phasic (blue) and tonic
(red) components of the signal.

70 80 80 100

HRtool. HRtool is a MATLAB function developed to convert the data from an
Electrocardiogram (ECG) or Pulse Oximetry (POX) signal into an HR vector. This
involves three main stages (see Fig. 3), which are the detection of peaks in the signal
(which is different for a POX or an ECG signal), the measurement of the interval
between pulses and the calculation of the corresponding HR value. Finally, the
algorithm evaluates the HR vector replacing any values that are outside the ranges
entered by the user (e.g. maximum and minimum HR values and maximum change
ratio between two consequent pulses).

8 http://www.musicsensorsemotion.com/tag/tools/
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Fig. 3. Stages of the HRtool on an ECG signal. The top plot shows the raw ECG signal. The
two middle plots show the peak detection stages, with a dynamic threshold. The bottom plot
shows the final HR vector, with the resulting replacement of values that were outside the
specified ranges (marked as dots in the plot). In this example, accuracy is at 85.9%, which falls
below the acceptance tolerance for this experiment, and would be discarded as a valid case.

3. Preliminary Analysis

We are not aware of any similar study with a database of this magnitude, which has
made it difficult to apply existing methodologies from smaller sized studies [17, 19].
Consequently, a large portion of the research presented in this paper has been
dedicated to do exploratory analysis on the results; looking to identify relationships
between variables and to evaluate the validity of the questionnaire and physiological
measurements.

3.1 Preliminary results from questionnaire

General Demographic Information. After removing all data with artefacts, as
described previously, an overall sample size of 3343 participants representing 11041
individual song listens was obtained. The remaining files were checked for
consistency and accuracy and no other problems found.

The mean DOB was 1980 (Std. Dev. 13.147) with the oldest participants born in
1930 (22 participants, 0.2%). 47% of the participants were Male, 53% Female, with
62.2% identifying as ‘Irish’, and 37.8% coming from the ‘Rest of the World’.

In the first version of the experiment participants heard four songs (1012
participants) with the subsequent versions consisting of three songs (2331
participants).
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Participants were asked if they considered themselves to have a musical
background or specialist musical knowledge, with 60.7% indicating ‘No’ and 39.3%
indicating ‘Yes’.

Interestingly, despite the majority of participants stating they had no specialist
musical knowledge, when asked to rate their level of musical expertise from ‘1= No
Musical Expertise’ to ‘5= Professional Musician’ 41.3% rated their level of musical
expertise as ‘3°.

Participants were also asked to indicate the styles of music to which they regularly
listen (by selecting one or more categories from the list below). From a sample of
N=3343 cases, preferences broke down as follows: Rock 68.1%, Pop 60.3%, Classical
35%, Jazz 24.9%, Dance 34.2%, Hip Hop 27%, Traditional Irish 17%, World 27.9%,
and None 1.2%.

Self-Report Data. An initial analysis was run to determine the song excerpts
identified as most enjoyed and engaging. At the end of each experiment session,
participants were asked which of the 3 or 4 (depending on experiment version)
excerpts they had heard was the most enjoyable and which they had found most
engaging. These questions appeared in all 5 versions of the experiment, making them
the only ones to appear in all versions (other than the background or demographic
questions).

The excerpts rated as ‘Most Enjoyed’ were James Brown ‘Get Up (I Feel Like)’
and Juan Luis Guerra ‘A Pedir Su Mano’ with these excerpts chosen by participants
in 55% of the cases where they were one of the excerpts heard. At the other end of the
scale, the excerpts rated lowest (fewest percentage of ‘Most Enjoyed’) were Slayer
‘Raining Blood’ and Dimitri Shostakovich ‘Symphony 11, Op. 103 - 2nd Movement’
with these excerpts chosen by participants in 13% of the cases where they were one of
the songs heard.

Participants were also asked to rate their ‘Liking’ of each excerpt (in experiment
versions 1-3). Having analysed the mean values for ‘Liking’ on a per-song basis, the
songs with the highest means were Jeff Buckley ‘Hallelujah’ (4.07/5) and The Verve
‘Bittersweet Symphony’ (4.03/5). The songs with the lowest mean values for ‘Liking’
were Slayer ‘Raining Blood’ (2.66/5) and The Venga Boys ‘The Venga Bus is
Coming’ (2.93/5).

The excerpt rated most often as ‘Most Engaging’ was Clint Mansell’s ‘Requiem
for a Dream Theme’ with this excerpt chosen by participants in 53% of the cases
where it was one of the excerpts heard. At the other end of the scale, the excerpt rated
lowest (fewest percentage of ‘Most Engaging”) was Ceolteori Chualainn ‘Marbhna
Luimigh’ with this excerpt chosen by participants in 11% of the cases where it was
one of the excerpts heard.

Interestingly, when the mean values for ‘Engagement’ for each excerpt were
calculated, Clint Mansell’s ‘Requiem for a Dream Theme’ was only rated in 10th
place (3.74/5), with Nirvana ‘Smells Like Teen Spirit’ rated highest (3.99/5), closely
followed by The Verve ‘Bittersweet Symphony’ (3.95/5) and Jeff Buckley
‘Hallelujah’ (3.94/5). It was observed that while mean values for engagement are all
within the 3-4 point range, there are much more significant differences between songs
when participants were asked to rate the excerpt which they found ‘Most Engaging’,
with participants clearly indicating a preference for one song over another.
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The excerpts with the lowest mean values for ‘Engagement’ were Primal Scream
‘Higher Than The Sun’ (3.05/5) and Ceolteori Chualainn ‘Marbhna Luimigh’
(3.09/5). The excerpts with the highest mean values for Chills / Shivers / Thrills /
Goosebumps (CSTG) were Jeff Buckley ‘Hallelujah’ (2.24/5), Mussorgsky ‘A Night
on Bare Mountain’ (2.23/5) and G.A. Rossini ‘William Tell Overture’ (2.23/5). The
excerpts with the lowest mean values for CSTG were Providence ‘J.O. Forbes of
Course’ (1.4/5), Paul Brady ‘Paddys Green Shamrock Shore’ (1.43/5) and Neil Young
‘Only Love Can Break Your Heart’ (1.5/5).

An analysis was also run to attempt to determine the overall frequency of
participants experiencing the sensation of CSTG. The number of instances where
CSTG were reported as a 4 or 5 after a musical excerpt was tallied, giving 872 reports
of a 4 or 5 from 9062 listens (experiment versions 1-3), meaning that significant
CSTGs were experienced in around 10% of cases.
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Fig. 4. Circumplex mapping of selected excerpts after a normalisation process to rescale the
values 0 -1 with the lowest scoring excerpt in each axis as ‘0’ and the highest as ‘1.

A selection of the musical excerpts used (some of which were outliers in the above
analyses) were mapped on to an emotional circumplex (as per Russell 1980), with
Arousal and Valence (as measured using the SAM) as the Y and X axes respectively.
An overall tendency of participants to report positive experiences during music
listening was observed, even for songs which might be categorised as ‘Sad’ e.g. Nina
Simone. Arousal responses were a little more evenly distributed but still with a slight
positive skew. It seems that while some songs may be perceived as being of negative
affect or ‘sad’, these songs do not in the majority of cases induce feelings of sadness.
It may therefore be more appropriate to rescale songs to fit the circumplex from
‘saddest’ to ‘happiest’ (lowest Valence to highest Valence) and ‘most relaxing’ to
‘most exciting’ (lowest Arousal to highest Arousal) rather than using the absolute
values reported (as seen on Fig. 4). This ‘positive’ skew indicating the rewarding
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nature of music listening corroborates previous findings as documented in Juslin and
Sloboda 2001 [24]. In future versions of this experiment we hope to identify songs
that extend this mapping and are reported as even ‘sadder’ than Nina Simone.

3.2 Preliminary results from physiology

Features Extracted from Physiology. Due to the scope and nature of the
experiment, the statistical analysis of the physiological signals has been approached
as a continuous iteration, extracting a few basic features from the physiology, running
statistical tests and using the results to extract new features. For this reason, the
results from the physiology presented in this paper are still in a preliminary stage. The
following features have been extracted from the 3 physiological vectors recorded in
each case of the database (Phasic EDA, Tonic EDA and HR): Standard deviation of
phasic EDA (STD_EDAP), mean of Phasic EDA (mean_EDAP), Tonic EDA final
value divided by duration (End_EDAT), Tonic EDA trapezoidal numerical integration
divided by duration (Area_EDAT), standard deviation of tonic EDA (STD_EDAT),
difference between tonic EDA vector and linear regression of tonic start and end
values (Lin_EDAT), mean of the 1st 10 raw EDA values (/nit_EDA), mean HR (HR),
mean heart rate variability (mean HRV), HRV end value divided by duration
(End_HRYV), standard deviation of HRV (STD_HRYV), square root of the mean squared
difference of successive pulses (RMSSD), HRV low frequency (0.04-0.15Hz)
component (LF_HRV), HRV high frequency (0.15-0.4Hz) component (HF_HRV) and
ratio between HF HRV and LF_HRV (HtoL HRY).

Exploratory analysis and evaluation of measurements.

Dry skin issue. After removing any EDA signals that presented more than 10% of
artefacts (measured by the EDAtool), preliminary analysis on several features
extracted from the EDA vectors presented bimodality in the distribution of the
features, which did not correspond to any of the variables measured or changed
during the experiment (e.g. gender, age, song, etc.). The mean of the first 10 samples
of each signal was calculated and added to the database in order to analyse the initial
impedance of each subject. Fig. 5 shows the distribution of this variable.

The distribution shows a clear predominance of a group of participants that
presented very high initial impedance (around the 160 mark). Although the origin of
this irregularity is not clear, it is equivalent to the measurement of the EDA sensor
when it has an open circuit (e.g. no skin connection). Due to the decision to use dry-
skin electrodes (avoiding the application of conductive gel prior to the experiment), it
is possible that this abnormality corresponds to a large group of participants in which
the sensor did not make a good connection with the skin, probably due to them having
a drier skin than the rest of the participants. It is also interesting to point out that there
were a few hundred cases in which the sensor failed to work correctly (e.g. cases with
conductivity near zero). For these reasons, the number of cases used for the analysis
was filtered by the /nit EDA variable, looking for values that had normal impedance
(above open-circuit value and below short-circuit value). This procedure solved the
bimodality issue; at the cost of significantly reducing the valid cases in the database
by 37%.
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Fig. 5. Histogram of the mean of the 1st 10 samples of the EDA signal; equivalent to the initial
conductivity. The histogram shows a large group of participants with an initial conductivity
around the 160 mark (high impedance).

Correlation between physiological features and age. As expected, correlation
between age and features extracted from physiology showed a negative relationship (p
< 0.01 level, two-tailed) for several HR features (STD_HRYV, RMSSD, LF HRYV,
HF _HRV, HtoL HRYV), being the features that specify frequency components the ones
with maximum correlation (r < -0.4).

Factor analysis of physiological features. Principal Component Analysis (PCA) was
performed on a selection of features, excluding features with high degrees of
correlation (it is important to state that all physiological features are derived from
only two channels, EDA and HR, which can produce problems of multi-collinearity
between features. This needs to be addressed prior to running a PCA). Principal
Component Analysis shows three salient factors after rotation. These indicate a clear
distinction between frequency-related features from HRV (Component 1: STD HRYV,
HF HRV, LF HRV, Age and RMSSD), features from EDA (Component 2:
Area_GSRT, End EDAT and STD EDAP) and secondary features from HRV
(Component 3: mean HRYV and End_HRYV).

Correlation between factors and questionnaire. The three salient components from
PCA were correlated against a selection of the self-report questionnaire: Song
Engagement, Song Positivity, Song Activity, Song Tension, Song CSTG, Song
Likeness and Song Familiarity. Results show a relationship between components 1
and 2 with the self-report questionnaire (see Table 1).

It is important to point out that the correlation coefficients presented below explain
only a small portion of the variation in the questionnaire results. Furthermore, it is
interesting that there was no significant correlation between CSTG and the 2™
component, taking into account that 10% of the participants reported to experience
CSTG. Nevertheless, it is fascinating to see a relationship between physiological
features and self-reports such as song likeness, positivity, activity and tension.
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Table 1. Correlation between components from physiology and questionnaire

Question Correlation by component (p<.001)
3
Song Engagement -.081 .075 -
Song Positivity - .097 -
Song Activity - 110 -
Song Tension - .044 -
Song Chills/Shivers/Thrills/Goosebumps - - -
Song Likeness -.052 .061 -
Song Familiarity -.060 .083 -

Music Dynamics vs. Physiology. Analysis of temporal changes in correlation with the
excerpt’s dynamic has been explored. Preliminary results show a relationship between
the three physiological vectors; phasic EDA, tonic EDA and HRV, with changes in
the music content, such as dynamics and structure. Fig. 6 shows two examples of
pieces that present temporal correlation between physiology and music dynamic (a
clear example is shown Fig. 6 (b) between the phasic EDA and the audio waveform
after the 60 second mark).
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Fig. 6. Plots of changes in Phasic EDA, Tonic EDA, HR and audio waveform (top to bottom)
during the duration of the song excerpt. Physiological plots show multiple individual responses
overlapped, with the mean overlaid on top in red. Fig. 6 (a) plots are for Elgar’s Enigma
Variations, and plots in Fig. 6 (b) are for an excerpt of Jeff Buckley’s Hallelujah.

4 Discussion

Due to the public gallery nature of this study, work has mainly been focused in
improving the acquisition of signals, and the algorithms that correctly identify and
remove noise and artefacts. Any unaccounted variation at this stage can impact the
validity of the statistical tests that use physiological measurements. It is important to
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point out that with the current sensor design, which requires no assistance and can be
used by participants briefed with short instructions; we are obtaining approximately
65% valid signals (with a confidence threshold of 90%). This has to be taken into
account when calculating group sizes for experiments that require physiological
sensing of audiences.

The analysis of the physiological measures shows high levels of dispersion
between participants for the same feature, which seems to indicate that large sample
sizes need to be maintained for future experiments. Furthermore, a significant amount
of the participants presented little to no variation in the features extracted from EDA.
Nonetheless, the preliminary results presented in this paper are a significant indication
of the possible relationships that explain the way we react to musical stimuli.
Correlations between physiology and self-report questionnaire, in groups of this size,
are a statement that this relationship undoubtedly exists. We are yet to further define
the precise musical cues and variables that influence changes.

Next steps in the analysis will be focusing on additional physiological descriptors,
multimodal analysis of the dataset, looking at temporal changes (versus the current
whole song approach) and measures of correlation and entrainment with musical
features. After the implementation in Dublin, ‘Emotion in Motion’ has been installed
in public spaces in the cities of New York, Genoa and Bergen. Each iteration of the
experiment has been enhanced and new songs have been added to the pool. We
believe augmenting the sample size of these kinds of studies is a requirement to start
elucidating the complex relationship between music and our affective response to it.
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Abstract. This paper focuses on emotion recognition and perception in
Romantic orchestral music. The study seeks to explore the relationship between
perceived emotion and acoustic and physiological features. Seventy-five
musical excerpts are used as stimuli to gather psychophysiological and
behavioral responses of excitement and pleasantness from participants. A set of
acoustic features ranging from low-level to high-level information was derived
related to dynamics, harmony, timbre and rhythmic properties of the music. A
set of physiological features based on blood volume pulse, skin conductance,
facial EMGs and respiration rate measurements were also extracted. The feature
extraction process is discussed with particular emphasis on the interaction
between acoustical and physiological parameters. Statistical relations between
audio, physiological features and emotional ratings from psychological
experiments were systematically investigated. Finally, a step-wise multiple
linear regression model is employed using the best features, and its prediction
efficiency is evaluated and discussed. The results indicate that merging the
acoustic and psychophysiological modalities substantially improves the
emotion recognition accuracy.

Keywords: musical emotion, music perception, feature extraction, music
information retrieval, psychophysiological response

1 Introduction

The nature of emotions induced by music has been a matter of much debate.
Preliminary empirical investigations have demonstrated that basic emotions, such as
happiness, anger, fear, and sadness, can be recognized in and induced by musical
stimuli in adults and in young children [1]. The basic emotion model, which claims
that music induces four or more basic emotions, is appealing to scientists for its
empirical efficiency. However, it remains far from compelling for music theorists,
composers, and music lovers because it is likely to underestimate the richness of
emotional reactions to music that may be experienced in real life [2]. The question of
whether emotional responses go beyond four main categories is a central issue for
theories of human emotion [3]. An alternative approach to discrete emotions is to
stipulate that musical emotions evolve continuously along two or three major
psychological dimensions [4]. There are an increasing number of studies investigating
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theoretical models in relation to music, the underlying factors and the mechanisms of
emotional responses to music at behavioral [5, 6] and neurophysiological levels [7].
Many studies try to investigate the relationships between physiological features, such
as electrocardiogram (ECQ), electromyogram (EMG), skin conductance response
(SCR) and respiration rate (RR), and emotional responses to music [9, 10, 11]. On the
other hand, numerous studies explore the relationships between acoustic features and
musical emotion [12, 13, 14]. Most of them try to extract a set of low- and high-level
acoustical features representing various music descriptors (thythm, harmony, tonality,
timbre, dynamics) and correlate them with emotional ratings from participants.

The main aim of this paper is to implement an approach for music emotion
recognition and retrieval based on both acoustic and physiological features. Our
model is based on a previous study [15], which investigated the role of physiological
response and peripheral feedback in determining the intensity and hedonic value of
the emotion experienced while listening to music. Results from this study provide
strong evidence that physiological arousal influences the intensity of emotion
experienced with music and affects subjective feelings. Using this fusion model, we
systematically combine structural features from the acoustic domain with
psychophysiological features in order to further understand their relationship and the
degree to which they affect subjective emotional qualities and feelings in humans.

2 Methods

2.1 Participants

Twenty non-musicians (M = 26 years of age) were recruited as participants (10
females). They reported less than 1 year of training on an instrument over the past
five years, and less than two years of training in early childhood. In addition, all
participants reported no hearing problems and that they liked listening to Classical
and Romantic music.

2.2 Stimuli

Seventy-five musical excerpts from the late Romantic period were selected for the
stimulus set. The selection criteria were as follows. The excerpts had to be anywhere
from 35 to 45 seconds in duration, because we wanted 30 seconds of complete music
after the fade-ins and fade-outs. The music was selected by the authors from the
Romantic, late Romantic, or Neo-classical period (from 1815 to 1900). However,
most excerpts were selected from the Romantic and late Romantic period. These
genres were selected under the assumption that music from this period would elicit a
variety of emotional reactions along both dimensions of the emotion model. Each
excerpt had to clearly represent one of the four quadrants of the two-dimensional
emotion space formed by the dimensions of arousal and valence. Ten excerpts were
chosen from a previous study [16], 21 Romantic piano excerpts from [17] and 44
from our own personal selection. Aside from the high-arousal/negative-valence
quadrant, which had 18 excerpts, the other three quadrants contained 19 excerpts.
Moreover, the excerpts varied in orchestration, in order to explore the effect of timbre
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variation on emotion judgments. Accordingly, there were 3 conditions: orchestral
(24), chamber (26), and solo piano (25).

2.3 Procedure

We measured five different physiological signals for each of the participants: facial
EMGs, skin conductance, respiration rate and blood volume pulse. The electrodes
were placed on the following locations: the middle finger (BVP), the index and ring
fingers (SC), above the zygomaticus muscle, located roughly in the center of the
cheek (EMG), and above the corrugator super cilii muscle, located above the eyebrow
(EMG). The respiration belt was placed around the torso in the middle of the rib cage
just below the pectoral muscles.

Before beginning the experiment, a practice trial was presented to familiarize the
participants with the experimental task. After listening to each musical excerpt,
participants were asked to rate their level of experienced excitement and pleasantness
on Likert scales.

3 Audio Feature Extraction

3.1 Low-Level acoustical features

A theoretical selection of musical features was made based on musical
characteristics such as dynamics, timbre, harmony, register, and rhythm. A total of
100 features related to these characteristics were extracted from the musical excerpts.
For all features, a series of statistical descriptors was computed such as the mean, the
standard deviation and the linear slope of the trend across frames, i.e., the derivative.
The MIR 1.3.4 Toolbox was used to compute the various low- and high-level
descriptors [18].

3.1.1 Loudness features

We computed information related to the dynamics of the musical signals such as
the RMS amplitude and the percentage of low-energy frames to see if the energy is
evenly distributed throughout the signals or certain frames are more contrasted than
others.

3.1.2 Timbre features

Mel Frequency Cepstral Coefficients (MFCCs) used for speech recognition and
music modeling were employed. We derived the first 13 MFCCs. Another set of 4
features related to timbre were extracted from the Short-term Fourier Transform:
spectral centroid, rolloff, flux, flatness entropy and spectral novelty which indicate
whether the spectrum distribution is smooth or spiky. The size of the frames used to
compute the timbre descriptors was 0.5 sec with an overlap of 50% between
successive windows.
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3.1.3 Tonality features

The signals were also analyzed according to their harmonic context. Descriptors
such as the Chromagram (energy distribution of the signals wrapped in the 12
pitches), the key strength (i.e., the probability associated with each possible key
candidate, through a cross-correlation with the Chromagram and all possible key
candidates), the tonal Centroid (a vector derived from the Chromagram corresponding
to the projection of the chords along circles of fifths or minor thirds) and the harmonic
change detection function (flux of the tonal Centroid) were extracted.

3.1.4 Rhythmic features

A rhythmic analysis of the musical signals was performed. Descriptors such as the
fluctuation (the rhythmic periodicity along auditory frequency channels) and the
estimation of notes and number of onset and attack times per second were computed.
Finally, the tempo of each excerpt in beats per minute (bpm) was estimated.

3.2 High-level acoustical features

In conjunction with the low-level acoustic descriptors, we used a set of high-level
features computed with a slightly longer analysis window (3s). The high-level
features are characteristics of music found frequently in music theory and music
perception research.

3.2.1 Pulse Clarity

This descriptor measures the sensation of pulse in music. Pulse can be described as
a fluctuation of musical periodicity that is perceptible as “beatings” in a sub-tonal
frequency band below 20 Hz. The musical periodicity can be melodic, harmonic or
rhythmic as long as it is perceived by the listener as a fluctuation in time [19].

3.2.2 Articulation

This feature attempts to estimate the articulation from musical audio signals by
attributing to it an overall grade that ranges continuously from zero (staccato) to one
(legato) by analyzing a set of attack times.
3.2.3 Mode

This feature refers to a computational model that rates excerpts on a bimodal
major-minor scale. It calculates an overall output that varies along a continuum from
zero (minor mode) to one (major mode) [14].

3.2.4 Event density

This descriptor measures the overall amount of simultaneous events in a musical
excerpt. These events can be melodic, harmonic and rhythmic, as long as they can be
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perceived as independent entities by listeners.
3.2.5 Brightness

This descriptor measures the sensation of how bright a musical excerpt is felt to be.
Attack, articulation, or the unbalance or lacking of partials in other regions of the
frequency spectrum can influence its perception.

3.2.6 Key Clarity

This descriptor measures the sensation of tonality, or tonal center in music. This is
related to the sensation of how tonal an excerpt of music is perceived to be by
listeners, disregarding its specific tonality, but focusing on how clear its perception is.
This scale is also continuous, ranging from zero (atonal) to one (tonal).

4 Feature extraction of physiological signals

From the five psychophysiological signals we calculated a total of 60 features
including conventional statistics in time series, frequency domain and sub-band
spectra as suggested in [20].

4.1 Blood volume pulse

To obtain the HRV (heart rate variability) from the continuous BVP signal, each
QRS complex was detected and the RR intervals (all intervals between adjacent R
waves) or the normal-to-normal (NN) intervals (all intervals between adjacent QRS
complexes resulting from sinus node depolarization) were determined. We used the
QRS detection algorithm in [21] in order to obtain the HRV time series. In the time-
domain of the HRV, we calculated statistical features including mean value, standard
deviation of all NN intervals (SDNN), standard deviation of the first difference of the
HRYV, the number of pairs of successive NN intervals differing by greater than 50 ms
(NN50), and the proportion derived by dividing NN50 by the total number of NN
intervals. In the frequency-domain of the HRV time series, three frequency bands are
of interest in general; very-low frequency (VLF) band (0.003-0.04 Hz), low frequency
(LF) band (0.04-0.15 Hz), and high frequency (HF) band (0.15-0.4 Hz). From these
sub-band spectra, we computed the dominant frequency and power of each band by
integrating the power spectral densities (PSD) obtained by using Welch’s algorithm,
and the ratio of powers between the low-frequency and high-frequency bands
(LF/HF).

4.2 Respiration
After detrending and low-pass filtering, we calculated the Breath Rate Variability

(BRV) by detecting the peaks in the signal within each zero-crossing. From the BRV
time series, we computed the mean value, SD, and SD of the first difference. In the
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spectrum of the BRV, peak frequency, power of two sub-bands, low-frequency band
(0-0.03Hz) and high-frequency band (0.03-0.15 Hz), and the ratio of power between
the two bands (LF/HF) were calculated.

4.3 Skin conductance

The mean value, standard deviation, and mean of the first and second derivatives
were extracted as features from the normalized SC signal and the low-passed SC
signal using a 0.2 Hz cutoff frequency. To obtain a detrended SCR (skin conductance
response) waveform without DC-level components, we removed continuous,
piecewise linear trends in the two low-passed signals, i.e., very low-passed (VLP)
with 0.08 Hz and low-passed (LP) signal with 0.2 Hz cutoff frequency.

4.4 Electromyography (EMGs)

For the EMG signals, we calculated similar types of features as in the case of the
SC signal. From normalized and low-passed signals, the mean value of the entire
signal, the mean of first and second derivatives, and the standard deviation were
extracted as features. The number of occurrences of myo-responses and the ratio of
these responses within VLP and LP signals were also added to the feature set in a
similar manner used for detecting the SCR occurrence, but with 0.08 Hz (VLP) and
0.3 Hz (LP) cutoff frequencies.

5 Results

For the 75 excerpts a step-wise multiple linear regression to predict the participant
ratings based on the acoustical and physiological descriptors between the acoustical
and physiological descriptors and participant ratings were computed to gain insight
into the importance of features for the arousal and valence dimensions of the emotion
space. Table 1 provides the outcome of the MLR analysis of the acoustic features onto
excitement and pleasantness coordinates of the excerpts and Table 2 the outcome of
the analysis of the acoustic and physiological features onto the same coordinates. The
resulting model provides a good account of excitement with an R* = 0.81 (see Table
1) using only the acoustic features spectral fluctuation (f = 0.551), entropy (8 =
0.302) and spectral novelty (8 = —0.245). For pleasantness, the model provides an R?
= 0.44 using only the acoustic features Mode (f = 0.5), Key Clarity (f = 0.27) and
entropy of Chroma (5 = 0.381).

The model using both acoustic and physiological features provides an R* = 0.85
(see Table 2) with spectral fluctuation (f = 0.483), entropy (8 = 0.293), spectral
novelty (f = —0.239), the std of the first derivative of the zygomaticus EMG (f = —
0.116), skin conductance ratio (f = 0.156), and the maximum value of the amplitude
in blood volume pulse (8 =—0.107). The model provides for pleasantness an R* = 0.54
using the acoustic and physiological features Mode (f = 0.551), Key Clarity (f =
0.211), entropy of Chroma (f = 0.334), the minimum of the std of the first derivative
of the zygomaticus EMG (f = 0.25), and the minimum of the blood volume pulse (f =
-0.231).

50



Psychophysiological measures of emotional response to Romantic orchestral music and their
musical and acoustic correlates

Table 1. Outcome of the multiple linear regression analysis of the acoustic features onto the
coordinates of the emotion space.

Excitement p Pleasantness p

Fluctuation 0.551 Mode 0.5
Enthropy 0.302 Key Clarity 0.27
Novelty -0.245 Chroma Entropy 0.381

Table 2. Outcome of the multiple linear regression analysis using acoustic features and
physiological features onto the coordinates of the emotion space.

Excitement p Pleasantness B
Fluctuation 0.481 Mode 0.551
Enthropy 0.293 Key Clarity 0.221
Novelty -0.23 Chroma Enthropy 0.334
1 diff EMGZ std -0.11 1 diff EMGZ min 0.25
SC Ratio -0.15 BVP min -0.231

6 Conclusions

In the present paper, the relationships between acoustic and physiological features

in emotion perception of Romantic music were investigated. A model based on a set
of acoustic parameters and physiological features was systematically explored. The
regression analysis shows that low- and high-level acoustic features such as
Fluctuation, Entropy and Novelty combined with physiological features such as the
first derivative of EMG Zygomaticus and Skin Conductance are efficient in modeling
the emotional component of excitement. Further, acoustic features such as Mode, Key
Clarity and the Chromagram combined with the minimum of the first derivative of
EMG zygomaticus and blood volume pulse effectively model the emotional
component of pleasantness. Using the existing approach merging acoustic and
physiological features boosts the correlation with behavioral estimates of subjective
feeling in listeners in terms of excitement and pleasantness. Results show an increase
in the prediction rate of the model of 4% for excitement and 10% for pleasantness
when psychophysiological measures are added to acoustic features.
Future work will explore and investigate by means of a similar model which low- and
high-level acoustical and physiological features influence human judgments on
semantic descriptions and perceptual qualities such as speed, articulation, harmony,
timbre and pitch.
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Abstract. In our previous work, we used canonical correlation analysis
(CCA) to extract shared information between audio and lyrical features
for a set of songs. There, we discovered that what audio and lyrics share
can be largely captured by two components that coincide with the di-
mensions of the core affect space: valence and arousal. In the current
paper, we extend this work significantly in three ways. Firstly, we exploit
the availability of the Million Song Dataset with the MusiXmatch lyrics
data to expand the data set size. Secondly, we now also include social
tags from Last.fm in our analysis, using CCA also between the tag space
and the lyrics representations as well as between the tag and the audio
representations of a song. Thirdly, we demonstrate how a multi-way ex-
tension of CCA can be used to study these three datasets simultaneously
in an incorporated experiment. We find that 2-way CCA generally (but
not always) reveals certain mood aspects of the song, although the ex-
act aspect varies depending on the pair of data types used. The 3-way
CCA extension identifies components that are somewhere in between the
2-way results and, interestingly, appears to be less prone to overfitting.

Keywords: Canonical Correlation Analysis, Mood Detection, Million
Song Dataset, MusiXmatch, Last.fm.

1 Introduction

In this paper we ask what is shared between the audio, lyrics and social tags
of popular songs. We employ canonical correlation analysis (CCA) to find max-
imally correlated projections of these three feature domains in an attempt to
discover commonalities and themes. In our previous work [16] we attempted to
maximise the correlation between audio and lyrical features and discovered that
the optimal correlations related strongly to the mood of the piece.

We extend this work significantly in three ways. Firstly, we make use of
the recently-available Million Song Dataset (MSD,[1]) to gather a large number
of audio and lyrical features, verifying our previous work on a larget dataset.
Secondly, we incorporate a third feature space based on social tags from Last.fm?.

* This work was partially supported by the EPSRC grant number EP/E501214/1
! www.last.fm

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
19-22 June 2012, Queen Mary University of London
All rights remain with the authors.
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On these three datasets we are able to conduct pairwise 2-dimensional CCA on
the largest public dataset of this type currently available. Lastly, we demonstrate
how 3-dimensional CCA can be used to investigate these data simultaneously,
leading to a multi-modal analysis of three aspects of music. Whilst it was intuitive
to us in our previous work that lyrics and audio would have mood in common,
it is less clear to us what commonalities are shared between the other pairs of
datasets. We therefore take a more serendipitous approach in this study, aiming
to discover which features are most strongly related.

The rest of this paper is arranged as follows. In the remainder of this Section
we discuss the relevant literature and background to our work. We detail our
data collection methods, feature extraction, and framework in Section 2. Section
3 deals with the theory of CCA in 2 and 3 dimensions. In Section 4 we present
our findings, which are discussed and concluded in Section 5.

1.1 The Core Affect Space

Although it may be the case that our CCA analysis leads to components other
than emotion, we suspect that many will relate to the mood of the piece. We
therefore review the analysis of mood in this Subsection.

Russell [17] proposed a method for placing emotions onto a two-dimensional
valence-arousal space, known in psychology as the core affect space [18]. The
valence of a word describes its attractiveness/aversiveness, whilst the arousal
relates to the strength, energy or activation. An example of a high valence, high
arousal word is ecstatic, whilst depressed would score low on both valence and
arousal. A third dimension describing the dominance of an emotion has also been
suggested [6], but rarely used by researchers. A more detailed visualisation of
the valence/arousal space with example words is shown in Figure 1.

1.2 Relevant Works

The valence/arousal space has been used extensively by researchers in the field
of automatic mood detection from audio. Harmonic and spectral features were
used by [8], whilst in [5] they utilised low-level features such as the spectral
centroid, rolloff, flux, slope, skewness and kurtosis. Time-varying features in the
audio domain were employed by various authors [15, 20], which included MFCCs
and short time Fourier transforms. For classification, many authors have utilised
SVMs, which have been shown to successfully discriminate between features [9].

In the lyrical domain, [7] used bag-of-words (BoW) models as well as n-grams
and term frequency-inverse document frequency (TFIDF) to classify mood based
on lyrics, whilst [10] made use of the experimentally deduced affective norms of
english words (ANEW) to assign valence and arousal scores to individual words
in lyrics. Both of these studies were conducted on sets of 500-2,000 songs.

The first evidence of combining text and audio in mood classification can
be seen in [21]. They employed BoW text features and psychological features
for classification and demonstrated a correlation between the verbal emotion
features and the emotions experienced by the listeners on a small set of 145
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Aroused 1 Excited
a
>
o
Angry < Delighted
Frustrated Pleased
Valance =
Miserable Satisfied
Sad At ease
Tired Sleepy

Fig.1: The 2-dimensional valence/arousal space as proposed by Russell [17].
Words with high valence are more positive, whilst low valence words are pes-
simistic. High/low arousal words are energetic/restful respectively.

songs. A larger study was conducted in [13] where they classified 1,000 songs
into 4 mood categories and found that by combining audio and lyrical features
an increase in recognition accuracy was observed.

In the tag domain, [14] used the social website Last.fm to create a semantic
mood space using latent semantic analysis. Via the use of a self-organising map,
they reduce this high-dimensional space to a 2-D representation and compared
this to Russell’s valence/arousal space, with encouraging results.

In combining tag and audio data, [3] demonstrated that tag features were
more informative than audio, whilst the combination was more informative still.
This was conducted on a set of 1,612 songs and up to 5 mood or theme categories.
Finally, a recent study considered regression of musical mood in continuous di-
mensional space using combinations of audio, lyrics and tags on a set of 2,648
UK pop songs [19].

Whilst insightful in terms of features and classification techniques, all of
the studies previously mentioned were conducted on small datasets by todays
standards (all significantly less than 10,000 songs). In this paper we address
this issue in a truly large-scale, multi-modal analysis. We discuss our feature
extraction and framework for our analysis in the following Section.
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2 Data Collection & Framework

This section details our data collection methods and the motivation for our ap-
proach. We found the overlap of the Million Song, MusiXmatch and Last.fm
datasets to be 223,815 songs in total, which was comprised of 197,436 training
songs and 26,379 test songs. After removing songs which contained empty fea-
tures, no lyrics or no tags, as well as those not in English, we were left with
101,235 (88%) training songs and 13,502 test songs (12%).

2.1 The Million Song Dataset

Devised as a way for researchers to conduct work on musical data without the
need to purchase a large number of audio files, the Million Song Dataset was
released on Feb 8", 2011. We downloaded this dataset in its entirety and ex-
tracted from it features relating to the audio qualities of the music. The features
we specifically computed are shown in Table 1. We also give our interpretation
of the features extracted, although there are some (e.g. danceability) where we
are unsure of the feature extraction process.

Table 1: List of audio features extracted from the million song dataset, with

interpretations.
Feature Interpretation
Mean Bar Confidence Average bar stability
Std Bar Confidence Variation in bar stability
Mean Beat Confidence Average beat stability
Std Beat Confidence Variation in beat stability
Danceability Danceability of track
Duration Total track time in seconds
Key Track harmonic centre (major keys only)
Key Confidence Confidence in Key
Loudness Loudness of track
Mode Modality (major or minor) of track
Mode Confidence Confidence in Mode
Mean Sections Confidence Average confidence in section boundaries
Std Sections Confidence Variation in section boundary confidences
Mean Seg. Conf. Average confidence in segment boundaries
Mean Timbres 1-12 12 features relating to average sound quality
Std Timbres 1-12 12 features related to variation in sound quality
Tempo Speed in Beats Per Minute
Loudness Max Total maximum of track loudness
Loudness Start Local max of loudness at the start of the track
Tatums Confidence Confidence in tatum prediction
Time Signature Predicted number of beats in a bar
Time Signature Confidence Confidence in time signature
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2.2 MusiXmatch

An addition to the MSD, the MusiXmatch dataset contains lyrical information
for a subset of the million songs. The features are stored in bag-of-words format
(for copyright reasons), and are stemmed versions of the top 5,000 words in the
database. In order to ensure we had meaningful words, we restricted ourselves to
the words which were part of the ANEW dataset [4], which reduced our dataset
to 603 words. We converted the BoW data to a term frequency-inverse document
frequency (TFIDF) score [11] via the following transformation.

Let the term frequency of the it feature from the j** song be simply the
BoW feature normalised by the count of this lyric’s most frequent word:

|word ¢ appears in lyric j|

TF;, =

maximum word count of lyric j

where | - | denotes ‘number of’. The inverse document frequency measures the
importance of a word in the database as a whole and is calculated as:

total number of lyrics

IDF; =1
1708 [lyrics containing word 4| + 1

(we include the 41 term to avoid potentially dividing by 0). The TFIDF score
is then the product of these two values:

TFIDF,LJ = TFi}j x IDF13

The TFIDF score gives an indication of the importance of a word within a
particular song and the entire database. Note that we used the ANEW database
simply to construct a dictionary of words which contain some emotive content
- no experimental valence/arousal or mood scores were incorporated into our
feature matrix.

2.3 Last.fm Data

The Last.fm data contains information on user-generated tags and artist simi-
larities, although we neglect the latter for the purpose of this study. The dataset
contains information on 943,347 tracks matched to the MSD and tag counts
for each song. We discovered 522,366 unique tags although only considered tags
which appeared in at least 1,000 songs, which resulted in 829 features. The top
tags from the dataset were Rock, Pop, Alternative, Indie and Flectronic. We
constructed a TF-IDF score for each tag in each song analogously to the previ-
ous section. Although it would have been possible to filter the tags according to
the ANEW database as per the lyrics, we know that tags contain information
other than mood, such as genre data. We are optimistic that our algorithm may
pick up such information, and so did not filter the Last.fm tags.
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2.4 Framework

In our previous work [16] we introduced an exploratory framework for the use of
CCA in correlating audio and lyrical features. We briefly recap this framework
for 2-way CCA before extending it to use in 3 datasets.

We are interested in what is consistent between the audio, lyrics and tags of
a song. In previous work, researchers have searched for a function f which maps
audio to mood [f(audio) = mood], else from lyrics or tags [g(lyrics) = mood,
h(tags) = mood]. In our 2-way CCA we seck functions which satisfy one of:

f(audio) ~ g(lyrics)
f(audio) =~ h(tags)
g(lyrics) =~ h(tags)

to a good approximation and for a large number of songs. Previously, we assumed
that the first relationship in the above equations captured some aspect of mood,
knowing of no other commonalities between the audio and lyrics of a song. This
was verified by using 2-way CCA to find such functions f and g. In this study,
we take a more serendipitous approach. We will use 2-way CCA on each pair
of datasets and see which kinds of commonalities are found. Perhaps they will
relate to mood, but we hope to discover other relationships and correlations
within the data. The extension of this work to 3 dimensions follows a similar
framework. We now seek functions f, g and h such that:

f(audio) =~ g(lyrics) =~ h(tags) (1)

simultaneously. Again, these functions will not hold true for every song, but we
hope they are approximately true for a large number of songs. The next Section
deals with the theory of canonical correlation analysis.

3 Canonical Correlation Analysis and a 3-Way Extension

3.1 2-Way CCA

Given two datasets X € R"*% and Y € R"¥% canonical correlation analysis
finds what is consistent between them. This is realised by finding projections of
X and Y through the dataset which maximise their correlation. In other words,
we seek weight vectors w, € R% wy € R% such that the angle  between Xw,
and Yw, is minimised:

{wy, wy} = argmin 6(Xw,, Yw,)

Wy , Wy

Conveniently, this can be realised as a generalised eigenvector problem (a full
derivation can be found in, for example, [2]):

(57 ) () = O ) () ®
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In our experiments, X and Y will represent data matrices formed from the MSD,
MusiXmatch or Last.fm datasets. The eigenvalue A is the achieved correlation
between the two datasets and (w,,w,) are the importance of each vector in the
corresponding data space. The eigenvectors corresponding to A can be sorted by
magnitude to give a rank of feature importance in each of the data spaces.

3.2 3-Way CCA

Whilst it will be insightful to see the pairwise 2-way correlations between the
three datasets, it would be more satisfying to investigate what is consistent
between all 3 simultaneously. Various ways of exploring this have been explored
in [12] - a natural extension in our setting can be motived as follows. Consider
three datasets X € R"*% Y ¢ R™%dy X ¢ RP*4: We motivate the correlation
of these three variables graphically. Consider 3 datasets and (for ease of plotting)
3 songs within this set. A potential set of projections Xwy,Ywy, and Zwz is
shown in Figure 2.

Song 3

A

» Song 2

Song 2 %

Fig. 2: Motivation for 3-way CCA on 3 example songs, showing the projections
X’LUX,Y’LUy, sz.

It is clear that the three projections are strongly correlated if the norm of
their sum is large. However, this is easy to obtain if each of the projections is
arbitrarily large. We therefore enforce the constraint that the individual lengths
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are bounded, and solve the following optimization problem:

max || Xw, + Yw, + Zw, + 1|

We , Wy, Wz

st || Xwx|? + |[Ywy|]® + | Zwz|? =1

Solving the above via the method of Lagrange multipliers, we obtain

10

550 [1Xwx + Yuy + Zwz |2 = A Xux |2 + [Yuy|? + | Zwz]?)] =0

where the asterix * represents partial differentiation with respect to the appro-
priate variable. This leads to the simultaneous equations

XT"Xwx + X"Ywy + XTZwy —AXTXwx =0
YT Xwx + Y " Ywy + YT Zwy —AYT Xwy =0
Z"Xwx + Z"Ywy + ZT Zwy — ANZT Zwy =0

which, in matrix form, is

0 XTy XTz wx XTxX o 0 wx
Y'x o Y7z wy | =A—=1) 0 YTy o wy (3)
ZtX ZTy 0 wy 0 0 zZTz wy

Substituting A — A — 1, we see that 3-dimensional CCA is an obvious extension
of the 2-dimensional set-up seen in Equation 2. Note however that the A is now
a generalisation of the notion of correlation, and is not necessarily bounded
in absolute value by 1. In our setting, the datasets X,Y and Z represent the
MSD, MusiXmatch and Last.fm datasets and our aim will be to maximise the
correlation between them. Our experimental results using pairwise CCA and
3-way CCA are presented in the next Section.

4 Experiments

4.1 Awudio - Lyrical CCA

We begin with a reproduction of our previous work [16] which uses CCA on
audio and lyrical datasets. This will serve to verify our method scales to datasets
of realistic sizes. The projections of the Audio and Lyrical datasets, ranked
by test correlation magnitude, are shown in Table 2. In each pairwise CCA
experiments we found the significance of the correlations under a x? distribution
to be numerically 0, owing to the extremely large data sizes. It is therefore
more important to look at the magnitude of the correlations rather than their
significance in the following experiments.

These projections agree with our previous finding that mood is one of the
common components between audio and lyrics. In the first component, words
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Table 2: Features with largest weights using Audio and Lyrical features in 2-way
CCA, first 3 CCA components. Training correlations on the first three compo-
nents were 0.5032, 0.4484 and 0.2409 whilst the corresponding test correlations
were 0.5034, 0.4286 and 0.2875.

CCA Lowest Highest
Comp.|Lyrical Feature Lyrical Weight|| Lyrical Paper Lyrical Weight
Death -0.0358 Love 0.0573
Dead -0.0274 Baby 0.0394
1 Burn -0.0239 Blue 0.0197
Hate -0.0219 Girl 0.0190
Pain -0.0204 Man 0.0170
Audio Feature Audio Weight || Audio Feature Audio Weight
Loudness Max -0.6824 Mean Timbre 1 0.6559
Loudness -0.0711 Mean Seg. Conf. 0.1638
1 Duration -0.0413 Loudness Start 0.1539
Mean Timbre 10 -0.0311 Mean Timbre 5 0.0698
Std Timbre 6 -0.0222 Mean Timbre 6 0.0649
Lowest Highest
Lyrical Feature Lyrical Weight||Lyrical Feature Lyrical Weight
Dream -0.0182 Man 0.0354
Love -0.0177 Hit 0.0325
2 Heart -0.0142 Girl 0.0303
Fall -0.0117 Rock 0.0291
Lonely -0.0113 Baby 0.0268
Audio Feature Audio Weight || Audio Feature Audio Weight
Loudness Max -0.5568 Mean Timbre 1 0.7141
Loudness Start -0.2846 Loudness 0.1424
2 Std Seg. Conf. -0.0855 Std Timbre 8 0.1233
Std Timbre 4 -0.0525 Mean Seg. Conf. 0.1227
Std Timbre 1 -0.0402 Mean Timbre 8 0.0446
Lowest Highest
Lyrical Feature Lyrical Weight||Lyrical Feature Lyrical Weight
Baby -0.0304 Man 0.0572
Fight -0.0281 Love 0.0409
3 Hate -0.0223 Dream 0.0341
Girl -0.0223 Child 0.0301
Scream -0.0199 Dark 0.0295
Audio Feature Audio Weight || Audio Feature Audio Weight
Mean Timbre 1 -0.6501 Loudness Max 0.5613
Loudness Start -0.2281 Duration 0.1874
3 Std Timbre 6 -0.1507 Loudness 0.1377
Std Seg. Conf. -0.0898 Std Timbre 8 0.1050
Tatums Conf. -0.0850 Std Timbre 10 0.0891
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with low weights appear more aggressive, whilst more optimistic words have the
highest weights. This suggests that this CCA component has captured the notion
of valence. Audio features in this domain show that high valence songs are loud,
whilst low valence words have important timbre features.

The second CCA component appears to have identified relaxed lyrics at one
extreme and more active words at the other. We consider this to be a realisa-
tion of the arousal dimension. In the audio domain, loudness and timbre again
seems to play an important role. It is more difficult to interpret the third CCA
component, although the sharp decay of test correlation values show that the
first two CCA components dominate the analysis.

4.2 Audio - Tag CCA

We now investigate 2-way CCA on audio/tag data, using Last.fm tags in place
of the lyrical data from Subsection 4.1. Components 1-3 are shown in Figure 3.

The first component of this CCA analysis seems to have found that the
maximal correlation can be obtained by having tags associated with metal tags
at one extreme and more serene tags at the other. The audio features in this
CCA component seems to be well described by the later timbre features.

In the second component, we also see an obvious trend, with modern urban
genre tags receiving high weights and more traditional music at the other. In the
audio space, these genres seem to be associated with timbre and audio features.

The correlations between these two sets is so strong that we can even inter-
pret the third CCA component, which has identified modern electronic music
and acoustic blues/country as strongly opposing tags in this dimension. Interest-
ingly, components 2 and 3 appear to have identified two distinct types of ‘oldies’
music (folk/blues respectively). In the audio domain these are accompanied by
structural stability (segment/tatum confidence) features.

4.3 Lyrical - Tag CCA

The first three CCA components of this experiment are shown in Figure 4.

In the first component it seems we are distinguishing heavy metal genres from
less aggressive styles. In the lyrical domain we see that the words with low weights
hold strongly negative valence; those with high weights are more optimistic. The
authors find the notion of Melodic Black Metal somewhat oxymoronic.

The second component also has a clear trend - extremes in this dimension
appear to be hip-hop/rap vs. worship music. We postulate that this represents
the dominance dimension mentioned in the Introduction, with the lyrical weights
corroborating this. In the third component we see no particular trend, which
is supported by the low correlation of 0.1807. Comparison with the training
correlation of 0.4826 suggests that this component is suffering from overfitting.

4.4 3-way Experiment
We display our results from 3-way CCA in Table 5.
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Table 3: Features with largest weights using Audio and Tag Features in 2-way
CCA, first 3 CCA components. Training correlations on the on these components
were 0.7361, 0.6432 and 0.5725 whilst the corresponding test correlations were

0.5685, 0.5237 and 0.3428 respectively.

CCA Lowest Highest
comp.| Tag Feature Tag Weight Tag Feature Tag Weight
Female Vocalists -0.0352 Metal 0.0672
Acoustic -0.0304 Death Metal 0.0542
1 |Singer-Songwriter -0.0289 Brutal Death Metal 0.0425
Classic country -0.0271 Punk rock 0.0378
Folk -0.0265 Metalcore 0.0371
Audio Feature Audio Weight|| Audio Feature Audio Weight
Mean Timbre 1 -0.5314 Loudness Max 0.7460
Loudness Start -0.1700 Std Timbre 6 0.0988
1 Mean Timbre 6 -0.1558 Mean Timbre 2 0.0500
Mean Seg. Conf. -0.1469 Mean Timbre 3 0.0491
Mean Timbre 5 -0.1021 Std bar Conf. 0.0267
Lowest Highest
Tag Feature Tag Weight Tag Feature Tag Weight
Oldies -0.0153 Hip-Hop 0.0418
Beautiful -0.0132 Dance 0.0355
2 60s -0.0126 Hip hop 0.0353
Singer-Songwriter -0.0116 Rap 0.0351
Folk -0.0110 Rnb 0.0231
Audio Feature Audio Weight|| Audio Feature Audio Weight
Loudness Start -0.5069 Mean Timbre 1 0.7522
Loudness Max -0.3506 Loudness 0.1248
2 Mean Timbre 6 -0.0631 Std Timbre 8 0.0578
Std Timbre 1 -0.0374 Mean Timbre 4 0.0497
Std Seg. Conf. -0.0360 Mean Timbre 10 0.0415
Lowest Highest
Tag Feature Tag Weight Tag Feature Tag Weight
Electronic -0.0284 Oldies 0.0335
Dance -0.0220 Classic Blues 0.0325
3 Vocal Trance -0.0198 Classic country 0.0290
Epic -0.0186 50s 0.0279
Pop -0.0181 Delta blues 0.0250
Audio Feature Audio Weight|| Audio Feature Audio Weight
Mean Timbre 1 -0.6988 Loudness Max 0.6416
Mean Timbre 4 -0.1141 Mean Timbre 3 0.1404
3 Tatums Conf. -0.0649 Mean Seg. Conf. 0.0757
Duration -0.0589 Mean Timbre 6 0.0732
Std Segs Conf. -0.0556 Loudness Start 0.0507
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Table 4: Features with largest weights using Lyrical and Tag Features in 2-way
CCA, first three CCA components. Training correlations on these components
were 0.5828, 0.4990 and 0.4826 whilst test correlations were 0.3984, 0.3713 and
0.1807 respectively.

CCA Lowest Highest
comp.| Lyrical Feature Lyrical Weight| Lyrical Feature Lyrical Weight
Death -0.1851 Love 0.2330
Dead -0.1201 Baby 0.1807
Human -0.1049 Girl 0.0792
1 God -0.0993 Christmas 0.0726
Pain -0.0925 Blue 0.0679
Tag Feature Tag Weight Tag Feature Tag Weight
Brutal Death Metal -0.3029 Xmas 0.0785
Death Metal -0.2470 Female Vocalists 0.0718
1 Metal -0.2449 Oldies 0.0688
Melodic black metal -0.2029 Pop 0.0680
Black metal -0.1338 Rnb 0.0652
Lowest Highest
Lyrical Feature Lyrical Weight| Lyrical Feature Lyrical Weight
Hit -0.1448 Christmas 0.4082
Man -0.1267 Snow 0.0907
2 Rock -0.1180 Glory 0.0607
Money -0.1073 Joy 0.0549
Brother -0.0999 Angel 0.0530
Tag Feature Tag Weight Tag Feature Tag Weight
Hip hop -0.2312 Xmas 0.4111
Rap -0.2014 Christmas 0.1679
2 Hip-Hop -0.1927 Christian 0.0662
Gangsta Rap -0.1460 Female Vocalists 0.0501
Underground hip hop -0.1143 Worship 0.0480
Lowest Highest
Lyrical Feature Lyrical Weight| Lyrical Feature Lyrical Weight
Love -0.0273 Christmas 0.6031
Heart -0.0262 Snow 0.0992
3 Rain -0.0247 Man 0.0800
Alone -0.0229 Rock 0.0716
Dream -0.0224 Hit 0.0702
Tag Feature Tag Weight Tag Feature Tag Weight
Love -0.0399 Xmas 0.5932
Female vocalists -0.0257 Christmas 0.2381
3 Alternative rock -0.0252 Hip hop 0.1265
Rain -0.0237 Rap 0.0975
Oldies -0.0227 Hip-Hop 0.0906
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In this incorporated experiment, the most prevalent dimension appears to
relate to arousal - highly weighted tags and features are gentle in nature, with
aggressive tags, lyrics and audio features. The second component seems to rep-
resent arousal. We struggle to find an explanation for the third component.

5 Discussion & Conclusions

In this Section, we discuss some of the findings from the previous Section, sum-
marise the conclusions of our study and suggest areas for future work.

5.1 Discussion

It is clear there are similar components in this study across different experiments.
For instance, the first component of the audio/lyrical 2-way CCA experiment
in the lyrical domain (first few rows of Table 2 ) were very similar to the first
component in the lyrical domain in the 3-way experiment (first rows of Table 5,
second cell). It appears that both of these discovered dimensions are capturing
the valence of the lyrics. To verify that these projections were indeed similar,
we computed the correlation between them (ie Ywy from Table 2 with Ywy
from Table 5), and found it to be 0.9979. The conclusion to be drawn is that
the valence of lyrics is very easily captured, by comparing with audio and/or tag
information.

We now turn our attention to the second CCA component. Interested in what
3-Way CCA analysis offered over pairwise CCA experiments, we investigated
the correlations between each pair of lyrical and tag projections from all three
experimental set-ups (2 pairwise and 3-Way). These are shown in Table 6.

Table 6: Comparison of Lyrical and Tag projections in pairwise and 3-way ex-
periments.

(a) Lyrical Projections (b) Tag Projections
CCA YWy CCA ZWgz
comp. 2 |Lyrics/Tags 3-Way CCA comp. 2 |Tags/Lyrics 3-Way CCA
Lyrics/Audio| 0.8679 0.9899 Tags/Audio| 0.7534 0.8853
Lyrics/Tags - 0.8886 Tags/Lyrics - 0.9434

The first of these tables can be interpreted as follows. Recall that in the lyrics-
audio CCA experiment we found the second component to describe the arousal
of the lyrics. In the lyrics-tag space we found the second lyrical component
related to the dominance of the lyrics. Recall that the correlations are equivalent
to the angles between the projected datasets. Table 6(a) therefore shows that
the cosines of the angles between these vectors and the third CCA component
are 0.9899 and 0.8886 respectively, but that the cosine of the angle between
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themselves is 0.8679. This shows that the 3-Way CCA component sits somewhere
between arousal and dominance, which can be verified by looking at the top and
bottom-ranked words in Tables 2, 3 and 5.

A similar, and in fact stronger pattern can be observed in tag space by inves-
tigating Table 6(b). Again, the 3-way CCA analysis seems to be an intermediate
between the ‘old vs new’ dimension observed in the audio-tag space (Table 3,
second component) and the dominance discovered in the lyrical-tag space (Table
4, second component).

5.2 Conclusions & Further Work

In this paper, we have conducted a large-scale study of the correlations between

audio, lyrical and tag features based on the Million Song Dataset. By the use of

pairwise 2-dimensional CCA we demonstrated that the optimal correlations be-

tween these datasets appear to have reconstructed the valence/arousal /dominance
dimensions of the core affect space, even though this was in no way imposed by

the algorithm. In some cases, we discovered components which appeared to cap-

ture some genre information, such as the third component of Table 3.

By using 3-dimensional CCA, we studied the 3 datasets simultaneously and
discovered that valence and arousal were the most correlated features. The cor-
relations beyond 2 or 3 components are difficult to interpret, which fits well
studies which describe the core affect space as a 2 or 3 dimensional space.

In our future work we would like to investigate different multiway CCA ex-
tensions such as those seen in [12], perhaps on new datasets as they are released.
We also would like to more thoroughly investigate regularization techniques to
avoid overfitting.
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Abstract. Music emotion regression is considered more appropriate than
classification for music emotion retrieval, since it resolves some of the
ambiguities of emotion classes. In this paper, we propose an AdaBoost-based
approach for music emotion regression, in which emotion is represented in
PAD model and multi-modal features are employed, including audio, MIDI and
lyric features. We first demonstrate the effectiveness of our approach, and then
focus on exploring the contribution of individual modalities to the regression of
each emotion dimension. A series of experiments show that lyric contributes the
most to the regression of emotion dimension P, while audio and MIDI
contribute more to the regression of dimension A and D. Thinking that the three
modalities provide complementary information from different angles, we
combine them and show that the best regression performance is obtained when
all modalities are used.

Keywords: Music emotion regression, Multi-modal, AdaBoost, PAD.

1 Introduction and Related Works

It is natural for us to organize and search music by emotional contents. Music emotion
retrieval has gained increasing attention in the field of music information retrieval
during the past few years [1].

Music emation classification, in which the emotion space is modeled by a given
number of classes, is a plausible approach to music emotion retrieval, but the
emotional states within each class may vary a lot, and this ambiguity may confuse
users when they retrieve music according to emotion. However in music emotion
regression, the emotion space is viewed as continuous and each point in the space is
considered as a distinctive emotional state [2]. In this way, the ambiguity associated
with emotion classes can be successfully avoided, so music emotion regression is
considered more appropriate for music emotion retrieval [3]. A regression approach is
proposed for music emotion recognition in [3], the best performance evaluated in
terms of the R? statistics reaches 58.3% for arousal and 28.1% for valence.

! Project supported by the Natural Science Foundation of China (Multi-modal Music Emotion
Recognition technology research No.61170167) & Beijing Natural Science Foundation
(Multimodal Chinese song emotion recognition)

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
19-22 June 2012, Queen Mary University of London
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In our work, PAD(Pleasure-Arousal-Dominance ) emotion-state model is used to
represent music emotion [4].Three nearly independent dimensions, P(pleasure),
A(arousal) and D(dominance), are used to represent emotional states in PAD model. P
distinguishes the positive-negative quality of emotional states, A refers to the
intensity of physical activity and mental alertness, and D is defined in terms of control
versus lack of control. In our work, we normalize all dimensions in the range of -4 to
4, in this way each emotional state corresponds to a specific point in PAD model. For
example, “anger” corresponds to (-3.51, 2.59, 0.95), which indicates that it is a highly
unpleasant, highly aroused, and moderately dominant emotional state.

Audio features have been commonly used in music emotion recognition and
audio-based techniques could achieve promising results [5]. As a complementary
source, lyric contains rich semantic information of songs and more emotionally
relevant information which is not included in audio [6].Additionally, MIDI is used in
symbolic music information retrieval [7]. Some previous works applied multi-modal
features for music emotion recognition and achieved promising performance [8,9,10].

In this paper, we present an AdaBoost approach for music emotion regression
where three-modality features, audio, MIDI and lyric, are employed. We firstly
demonstrate the effectiveness of our regression approach by comparing it with several
baseline regression algorithms, and secondly use each modality alone to explore the
contribution of each modality to the regression of different emotion dimension, and
thirdly combine the three modalities to demonstrate the performance improvement of
multi-modal feature combination for music emotion regression, lastly use a feature
selection technique to reduce feature dimensions and computational complexity.

The paper is organized as follows. Section 2 describes the features and feature
processing, Section 3 describes the regression approach, Section 4 provides the
analysis of experiment results, and the last Section makes the conclusion and prospect.

2 Dataset and Feature Processing

2.1 Dataset

We download 2500 Chinese songs from network, including audio, MIDI and lyric
data for each song, which cover more than 900 singers and more than 1000 albums,
and include different genres such as pop, rap and rock. Then 11 volunteers whose
ages are from 22 to 50 use Self Assessment Manikins(SAM) [11] to annotate the
songs with PAD values ranging from -4 to 4. When a song is annotated by more than
8 volunteers and the emotion values given by different annotators are consistent (all
positive or all negative), the song will get a mean value as its emotion label and be
retained into our dataset. In this way, the final music dataset includes 1687 songs.

2.2 Features
Audio Features. We extract audio features from wave files of the dataset by jAudio

[12], which is a system to extract the basic features from audio signal. We set the
window size to 512ms (the signal sampling rate to 22KHz) to extract audio features,
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including one-dimension (e.g. RMS) and multi-dimension vectors (e.g. MFCC’s). 27
kinds of audio features that have been commonly used in MIR are extracted to
compose an audio feature vector of 112 dimensions for a song. Table 1 shows part of
the audio features.

MIDI Features. We extract MIDI features from MIDI files of the dataset by
jSymbolic [13], which is a feature extraction system for extracting high-level musical
features from symbolic music representations, specifically from MIDI files. Unlike
audio data, MIDI data contains the information reflecting music concepts directly.
102 kinds of MIDI features are extracted to compose a MIDI feature vector of 1022
dimensions for a song. Table 2 shows part of the MIDI features.

Table 1. The partial list of audiofeatures. Table 2. The partial list of MIDI features.

Audio features MIDI features
Feature Dimensions Feature Dimensions
MFCC’s 13 Basic Pitch Histogram 128
LPC 10 Beat Histogram 161
Spectral Rolloff 1 Melodic Interval Histogram 128
Spectral Flux 1 Pitch Class Distribution 12
RMS 1 Acoustic Guitar Fraction 1
Compactness 1 Amount of Arpeggiation 1
Zero Crossings 1 Note Density 1
Power Spectrum  variable Duration 1
All 112 All 1022

Lyric Features. We firstly download the lyrics of all the songs from Internet, and
then do some pre-processing to them with traditional NLP tools, including stop-words
filtering and word segmentation etc. Finally Unigram, Bigram and Trigram features
are extracted from the lyrics.

Unigram. Unigram refers to the sequences of single word appeared in documents.
Bigram. Bigram refers to a distinctive term containing 2 consecutive words appeared
in documents. Because negation words often reverse emotion of the words next to
them, it seems reasonable to incorporate word-pairs to take effect of negation words
into account in emotion analysis.

Trigram. Trigram refers to a distinctive term containing 3 consecutive words
appeared in documents. Because bigrams only reflect parts of useful multi-word
patterns for emotion expression, we take trigrams into account additionally.

Finally, in order to reduce the lyric feature space, we select the 3000 most
frequently appeared N-grams (n=1, 2, 3) as lyric features. In our work, the feature
vector of a lyric can be expressed as (vy, Va, V3, ... Vaono). Here v; € {0, 1}: if N-gram i
appeared in the lyric, vi=1; otherwise v;=0.

2.3  Feature Processing

In our work, seven different feature sets are employed for the regression of emotion
dimension P, A and D, including the set of audio features(A), the set of MIDI
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features(M), the set of lyric features(L), the set of audio and MIDI features(A+M), the
set of audio and lyric features(A+L), the set of MIDI and lyric features(M+L), and the
set of audio, MIDI and lyric features(A+M+L). A simple concatenation scheme is
employed to combine the multi-modal features. For example, a concatenated feature
vector of the three modalities can be expressed as (AjAz..A4x , MMy .. .M, ,
Li,Ly,...L;). Where A~A, are audio features, and x=112; M;~M, are MIDI features,
and y=1022; L;~L, are lyric features, and z=3000. The number of dimensions of a
concatenated feature vector is x+y+z=4134.

The space formed by the raw concatenated features has a huge number of
dimensions. To reduce the computational complexity of learning and regression,
increase the efficiency and generalization capability of the regression model, we do
feature selection on each of the original feature sets, to find a subset of the original set
which could maximize the performance of regression model. Correlation-based
Feature Subset Selection [14] with BestFirst as its search method is employed in our
work, which evaluates the worth of a feature subset by considering the individual
predictive ability of each feature along with the degree of redundancy between them,
subsets of features that are highly correlated with the class while having low inter-
correlation are preferred [15].

In feature selection process, we have found that some features are effective to all
the 3 emotion dimensions, such as LPC, beat histogram, basic pitch histogram,
melodic interval histogram, etc. But some features only effective to some of the 3
dimensions, such as staccato incidence, spectral rolloff point, etc, which only
effective to dimension A and D. After feature processing, we get seven final feature
sets for emotion dimension P, A and D.Table 3 shows the number of selected features
of each feature set.

Table 3. The number of selected features in each feature set.

P A D
A 17 16 16
M 44 43 54
L 262 410 474
A+M 43 51 54
A+L 349 208 331
M+L 115 67 203
A+M+L 116 69 86

3  Regression Algorithm

AdaBoost is a commonly used boosting method, which works by iteratively running
weak learners on different distributions of training data, so as to get an integrated
regression model more powerful than weak learners.

We present an AdaBoost regression approach in this paper, which follows most of
the steps of AdaBoost.R2 [16] and uses MultiLayerPerceptron(MLP) [17] as the weak
learner. MLP is a typical feed forward neural network connecting several perceptrons
by a hierarchy, and uses error back propagation to adjust connection weights
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continuously. We called our approach AdaBoost.RM(R refers to Regression and M-
MultiLayerPerceptron).

Given a set of m training instances: (X1, Y1),....(Xm, Ym), Where X...x,, are the
features, and y;...ynE€[-4, +4] are the P, A or D emotion values of the instances.
Initially, we set the weights of the training instances as D(i) = 1/m, then iteratively
running MLP on the instances to train a regression model for P, A, or D and modify
the weights of the instances accordingly. We set the number of iterations to 10,
because the performance of the algorithm no longer improves when the number of
iterations is greater than 10. The instance weight modification method is as follows:

L= 3 (Y () 1)

maxij=1,7..mfe&)-yi)

De(®) (=) @)

Deya (i) = - )

Where f; is the regression model learned in iteration t, f;(x;) is the regression
result of x;from model f,. D.(i) is the weight of instance i in iteration t, L, is the
average loss of f;, z, isanormalization factor that makes Y; D;,, (i) = 1.

This reweighting procedure makes the poorly predicted instances get higher
weights but well predicted ones get lower weights. Finally, an average formula is used
to calculate the final regression result instead of the “INF” formula of AdaBoost.R2:

®)

lLt
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Where Y = {f; (x), (%), ..., fr(x)}, AVE is the average function.

4  Experiments and Results Analysis

4.1 Evaluation Criteria

We conduct a series of experiments to evaluate the performance of our regression
approach. Different regression algorithms and different feature sets are tried to build a
regression model for each emotion dimension(P, A and D), and the performances are
measured in terms of correlation coefficient (CF) and R statistics both developed by
Karl Pearson. They are defined as follows:

2N (REX)-RED) (i)
CFXY = . i 1( i 21 ) Nl — (4)
JziZl(R(xi)—Roa)) JziZl(Yi—Y)
N L 12
RZXY =1- M (5)

N (vi-1)2

Where Y; is the emotion label, R(X;) is the regression value of feature vector X;.

To ensure the validity of the results, we use 5-fold cross validation to evaluate the
performance of regression models. The dataset is randomly broken into five subsets of
the same size, with four being used for training and one for testing, and this process is
repeated 5 times and finally the mean CF and R? value is taken.

74



Di Guan, Xiaoou Chen and Deshun Yang
4.2  Comparison of AdaBoost.RM with Baseline Algorithms

Because of the different used datasets, it is not reasonable to compare our approach
with existing ones. However we compare our approach with three baseline algorithms.
The first is LinearRegression [18] which uses linear regression for prediction, the
second is SMOreg [19] which implements support vector machine for regression, and
the last is original AdaBoost.R2 algorithm. The experiments are based on the three-
modality feature set(A+M+L) introduced in Section 2.3, and the results are showed in
Table 4.

Table 4. Performance of our approach compared with that of baseline ones.

P A D
CF R? CF R? CF R?
LinearRegression 0.688 0.476 0.823 0.693 0.715 0.529
SMOreg 0.692 0.48 0.828 0.696 0.72 0.542
AdaBoost.R2 0.536 0.284 0.778 0.61 0.672 0.435
AdaBoost.RM 0.702 0.488 0.843 0.708 0.755 0.558

Table 4 shows that among all the regression algorithms our approach achieve the
best performance for the regression of all the emotion dimensions(P, A and D), this
indicates the effectiveness of our approach. It’s to be noted that our approach
performs better than AdaBoost.R2, which demonstrates the effectiveness of our
modification to AdaBoost.R2. On the other hand we can see that all the regression
algorithms have achieved promising performance on our three-modality feature set,
which indicates that our feature processing technique and the selected features are
really effective to music emotion regression.

4.3  Contributions of Different Modality and Effectiveness of Multi-modal
Feature Combination

We conduct a series of experiments to explore the contribution of different modality
to the regression of each emotion dimension, and demonstrate the effectiveness of
multi-modal feature combination.

The seven feature sets introduced in Section 2.3 are employed for the regression of
all the emotion dimensions(P, A and D). The results are showed in Table 5.

Table 5. Contributions of individual modality and effectiveness of multi-modal features.

P A D
# FeatureSet CF R? CF R? CF R?

1 A 0.473 0.166 0.724 0.516 0.667 0.38
2 M 0.541 0.305 0.823 0.685 0.73 0.508
3 L 0.623 0.383 0.461 0.202 0.575 0.328
4 A+M 0.571 0.285 0.812 0.663 0.719 0.474
5 A+L 0.681 0.465 0.745 0.554 0.728 0.53
6 M+L 0.68 0.469 0.828 0.681 0.738 0.542
7  A+M+L 0.702 0.488 0.843 0.708 0.755 0.558
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In Table 5, the 1% to 3" rows show that:

1.  Among the three modalities, lyric has the biggest contribution to the regression
of emotion dimension P.

2. To the regression of dimension A and D, audio and MIDI contribute more than
lyric, and MIDI has the biggest contribution among the three modalities. This
indicates that MIDI features contain more useful information related to emotion
dimension A and D compared with audio and lyric features.

3. Audio and lyric are complementary on the regression of dimension P and A, the
reasons maybe that audio signal contains a large amount of energy related
information such that the extracted audio features reflect emotional intensity
more directly, while lyric contains more semantic information so as to express
emotion more directly.

The 4™ to 7" rows show that:

1. The regression performance has been enhanced on all the emotion dimensions
when any two modalities are combined.

2.  The best regression performance has been achieved on all the emoation
dimensions when all the three modalities are combined. This indicates that the
three modalities provide useful and complementary information for music
emotion regression, and the greatest improvement of performance can be
achieved when all the three modalities are used.

Generally Speaking, audio signal contains a large number of energy relevant
information which reflects emotional intensity more directly; MIDI data contains
more information which reflects the concept of music more directly; lyric includes
more semantic information which describes emotional inclinations more directly.
Audio and MIDI have big contribution to emotion dimension A and D, while lyric has
big contribution to emotion dimension P. The three modalities provide
complementary information for music emotion regression, and the greatest
improvement of regression performance can be achieved when all the three modalities
are combined.

5 Conclusion and Future Work

In this paper, we present three main parts of our research work on music emotion
regression. First we demonstrate the effectiveness of our regression approach, and
then we expound the contribution of each modality to the regression of each
dimension of PAD model, and last we verify the performance improvement of
emotion regression models brought about by the combination of multi-modal features.

There are two focuses in the future, one is to find more informative features for
music emotion recognition, and the other is to build a music emotion retrieval system
based on our regression model, in which songs can be retrieved by specifying an
emotional state.
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Abstract Music evokes and carries emotions. Despite many studies having
investigated the relation between music and emotion, current research lacks a
systematic and empirically derived taxonomy of musically induced emotions
[1]. This work contributes to the question which musical features in particular
are able to induce emotions while listening. Problems of defining and
measuring emotions are explained. A method to measure affective states
induced by music with the help of Free Choice Profiling (FCP) is outlined. Two
FCP experiments, assessing the usefulness of the method for emotional research
and the selection of test stimuli are described. The shown results are in line with
psychological theories of emotions, i.e., the valence/arousal model.

Keywords: Free Choice Profiling, Measuring Emotions, Self-report.

1 Introduction

A diverse range of studies was carried out in the past to investigate how and in which
way music influences the emotions of the listener, but still two main questions
remain: What exactly is an emotion and how can it be measured? This paper
contributes to the question which musical features in particular are able to induce
emotions while listening; the research was conducted within a project funded by the
German Research Foundation.

A broad overview of common measurement methods can be found in [2].
Although the term emotion is frequently used in literature, authors disagree on its
definition, and a simple definition cannot be given. Scherer [3], for example, defines
an emotion as an affective phenomenon, distinguishable from feelings, moods, or
attitudes. Emotions, resulting from cognitive processes, are necessary for
comprehension and appraisal of stimuli on the basis of knowledge. Seeing emotion as
a phenomenon consisting of five components (cognitive, neurophysiological,
motivational, motor expression, and subjective feeling), Scherer concludes that a
universal measure would only become possible by taking into account changes of all
components.

Due to the lack of an all-embracing measurement method, each component is
measured on its own. The subjective experience of emotions can be assessed in
different ways. One possibility is the measurement of changes in psychophysiological
parameters like heart rate, heart rate variability and skin conductance during music
perception. Numerous studies about the measurement of such physiological correlates

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
19-22 June 2012, Queen Mary University of London
All rights remain with the authors.
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of emotions were carried out over the years (a brief review of these methods can be
found in [2,4,17]), but this paper is focused on a second possibility: The assessment of
the subjective experience of emotions during music perception based on self-reports
[8]. In self-report methods, the subjects are stimulated to verbalize and express their
emotions towards stimuli. Different techniques, called answering formats, exist to
assess the participants’ emotions, such as affective scales, free descriptions, or the use
of “emotional space” [4]. Every answering format has different advantages and
drawbacks when measuring emotions. The next section will explain in more detail
advantages and disadvantages of common measuring methods.

2 Challenges in Measuring Subjective Experience of Emotions via
Self-reports

In [2, p. 210] Zentner states that “there are four important limitations to self-report
methodology [...]: a) demand characteristics, b) self-presentation biases, c¢) limited
awareness of one’s emotions, and d) difficulties in the verbalization of emotion
perception [...]".

While the assessment of subjective experience with closed-response self-report
methods such as adjective scales [5] or emotional spaces [6] is ensuring efficiency
and, to some degree, a standardization of data collection, “the predetermined choices
[of descriptors] might influence the participant to respond along the provided
categories [and] the interpretation of the terms provided by the researcher might vary
considerably across people [...]” [2, p. 193]. One attempt to overcome the problems
of closed-responses is the usage of a free response measurement: Subjects are allowed
to explain the nature of the state they experience, i.e., an emotion while listening
music, in their own words, for example in written form or an interview. A content
analysis of the narrative establishes the link between music and the induced emotions.
Unfortunately, the data treatment and interpretation of such a content analysis is not
an easy task and cannot be automated. A second disadvantage lies in the different
linguistic abilities of the subjects — some might lack an appropriate vocabulary to
describe the emotional experience during listening to music. This might lead to a loss
of information. A possible way to promote the advantages of both measurement
approaches is the combination of open and closed-response format.

An approach using an open response format in combination with a closed-response
format was presented in [8], the so-called Free-Choice Profiling (FCP). By applying
FCP, subjects first define and identify individual attributes (emotional terms, also
called descriptors) by themselves. The rating of intensity of the emotional experience
during music perception is then done with the help of adjective scales, where the
individual attributes are used as labels. Due to the design of the test method, it is
taken into consideration that different subjects might use terms in different ways, or
different terms with the same underlying meaning. The study mentioned in [8] was
able to obtain clear and interpretable results consistent with music theory and
emotional psychology. However, the study investigated only a small set of
major/minor chord items, and as it was the first application of FCP in the field of
emotions in music, questions of reliability and general feasibility of the method
remained.
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3 Experimental Design and Parameters

The promising results of [8] led to a research project funded by the German Research
Foundation to verify FCP as a useful test methodology for the assessment of emotions
and to enable a better classification of musical parts based of their emotional impact
on music perception.

This paper presents two preliminary FCP studies of this ongoing project that were
conducted with different scopes: The first experiment aimed at assessing the selection
of suitable test stimuli, in terms of their degree of emotional impact. The target of the
second study was to verify the usage of FCP as a suitable test methodology by using
different test material. The test method, items, and participants for both experiments
are explained in this section.

3.1 Test Method in General

FCP, a method common in food research, was used to identify individual attributes
(emotional terms) and to rate the liking and/or intensity of those attributes. The
procedure, which is outlined in detail in [8, 9], helps to identify significant attributes,
discrimination, and panelist performance. It takes into consideration that different
subjects might use terms in different ways, or different terms with the same
underlying meaning. In recent years, FCP was also successfully applied and refined in
the field of user experience to assess multimodal quality perception [18].

As mentioned in [18] the FCP is structured into four different parts, referred to as
introduction, attribute elicitation, refinement of attributes, and sensory evaluation. In
the introduction the nature of descriptive evaluation, in particular the use of the
participant’s own attributes to describe the perceived emotionality of test items, is
explained in detail. This first step of the method is the most crucial part, because here
the cornerstone for the assessment is laid. Subjects have to understand the method
correctly, but special care must be taken not to influence them in a certain direction.
Therefore, the participants are shown how to find attributes that define emotions with
an easy task of a different perceptual domain'. The attribute elicitation aims at finding
individual emotion attributes that characterize each participant’s emotional perception
of the different test stimuli. In this study, participants listened to a small
representative subset of test items (see Section 4.2) and wrote down the perceived
emotions using their own words, without any limitation concerning the number of
attributes. No additional technique like repertory grid method [10] or natural grouping
[10] was used as support for the elicitation of attributes. In the third step a refinement
of attributes was done. Here, strong attributes were chosen out of all developed
attributes according to two rules: First, attributes must be unique and each attribute
must describe only one aspect of emotion. Second, the participants must be able to
define the attribute in their own words. Hence, the participants had to write down a
definition of each of the attributes left over for the final evaluation. For the sensory
evaluation all generated attributes were printed out on paper together with 10 cm long

! For example, as it was the case in this study, the participants are asked to describe the
emotional impact of different movies or photos.
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scales, labeled with “min” and “max”2. These individual score cards, one for every
test item, were used for the evaluation of all test items, which were presented
randomly one by one. The subjects were advised to mark the perceived strength of
each attribute for each test item.

3.2 Test Items

Experiment 1: The test items consisted of eight specifically designed major/major
and minor/minor chord combinations, derived from the circle of fifths (see Figure 1).
Each item consisted of two chords played one after the other: C/F, C/G, C/B, C/Db
(major), as well as c/f, c/g, ¢/b, c/db (minor). These are the two chords located next to
C (F and G), and the ones furthest away (B and Db). To assess the selection of
suitable test stimuli, in terms of their degree of emotional impact, these musical
phrases were also varied in instrument choice and tempo. Their length varied,
depending on instrument choice and tempo, from approx. 2.5s to 7.5s. The decision to
use these basic musical structures was made in order to exclude as many other
variables as possible, including familiarity with well-known musical pieces.
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Fig. 1. Circle of fifths. (from: en.wikipedia.org, licensed under CC BY-SA 3.0)

Three different instruments were used: Violin, piano, and synthesizer. Violin was
chosen because of the possibility to induce sad emotions [12]. Former studies indicate
that artificial instruments, e.g., a synthesizer, can lead to a decreased recognition of
sad emotions [12]. Piano was chosen because of its broad usage and popularity in
other studies, i.e., to allow comparability [13]. Furthermore, three different tempi (30,

2 Where “min” means that the attribute is not perceived at all, while “max” refers to its
maximum pronounced form.
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70, and 120 bpm) were used as conditions. The previous FCP study [8] used 30 bpm
only and indicated that this tempo already induces a slightly sad emotional offset, so
this tempo was used in this study for comparison. 70 bpm was chosen as it is close to
resting heart rate and can be seen as a “normal” state of activation for the listener. 120
bpm is a common tempo for modern dance music as well as for modern marches
(“march tempo”) and can be regarded as more activating. This results in a total set of
72 musical phrases.

Experiment 2: Several participants of experiment 1 mentioned that the test items
appeared to be too short for eliciting distinctive emotions. The second experiment
therefore aimed to investigate whether longer test items were perceived differently.
New items were created according to Table 1. As the first experiment took the
participants nearly 60 min. on average, it was decided to use fewer items to
compensate for the longer item length. Only two different tempi (70 and 120 bpm)
and only one instrument (synthesizer) were used. The item length ranged from 6s to
10s. The reduced set of 16 test items led to a much shorter rating time of only 15 min.
on average.

Table 1. Chord combinations used in the second experiment.

Item number Chord combination
C-G-C-F-C-G-C-F-C
a-e-a-d-a-e-a-d-a
C-A-C-D-C-A-C-E-C
a-f#-a-b-a- f#-a-c#-a
C-F#-C-B-C-F#-C-Db-C
a-d#-a-g#-a-d#-a-bb-a
C-Eb-C-Bb-C-Eb-C-Ab-C
a-c-a-g-a-c-a-f-a

(eI B N O R S

3.3 Test Panel

In the first test 24 subjects, 9 female and 15 male, participated. The average age was
24 .8 years.

The number of subjects in the second experiment was 10, with an average age of
24.7 years. Half of the participants were male and the other half female.

Any participant took part in only one of the experiments. Although some subjects
reported slight hearing damages, none of the subjects were rejected from test
participation and analysis.

4 Experiment 1

The first experiment aimed at assessing the selection of suitable test stimuli and a
general re-evaluation of FCP for the assessment of emotional impact while listening
to musical phrases.
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4.1 Test Facilities

The tests were conducted in the Audio Lab at Ilmenau University of Technology, a
room compliant to ITU-R BS.1116-1 [14], to EBU 3276, and to DIN 15996. Its exact
dimensions are 8.4m x 7.6m x 2.8m. Two identical Genelec 1030A loudspeakers were
used in the test, placed on stands at ear height of the seated subjects. Participants were
seated in the sweet spot position in front of a desk with a flat screen monitor,
keyboard, and mouse. The arrangement of the speakers and the listening positions are
in accordance with ITU-R BS.1116-1.

4.2 Test Procedure in Detail

Introduction: Each participant received a short introduction about the test in general
and the test method FCP. They were handed out a privacy policy and had to fill out a
short questionnaire regarding demographics, musical knowledge, and their current
mood. For a better understanding of the attribute elicitation and listening task, each
subject was asked to imagine two different (known) movies and to verbalize the
differences in the emotions they associated with them. The supervisor took care to
avoid giving predetermined attributes that might influence them in a certain direction.

Attribute Elicitation: During this stage, each participant assessed a representative
selection of 16 of the final test items, that is one item for each instrument, tempo, and
key, and wrote down the verbal descriptors with which they would have to rate these
items in the fourth part (attribute rating). A graphical user interface (GUI) was used,
allowing the subjects to listen to each item as often as they wanted. During this part,
the supervisor left the room for the control room, in order not to disturb the
participant. The participants were seated in a 90° position to the control room
window, thus the supervisor remained available, either via eye contact or a
microphone connection.

Attribute Refinement: After the participant signaled that he/she was done, the
supervisor and the participant reviewed the attribute list together. The participant
decided if some words could be summarized to one single term or should be renamed.
After this, the participant was asked to give a brief explanation for each term, if
possible. The attribute list was reviewed once again afterwards.

Attribute Rating: Starting with a short rating test of 3 items and all of his or her
attributes, each participant carried out a training task. In case the participant felt the
need to apply changes, they were allowed to modify their descriptors one last time.
After this, the actual test started, where each subject rated all 72 items with the
complete set of their descriptors. The test allowed the participants to listen to each test
item as often as they wanted, but it was not allowed to revise ratings of prior items. It
was planned to have a rating software right from the beginning, but due to a computer
failure the first 4 subjects did a rating on paper with a list of their attributes on the left
and for each attribute a 10 cm long rating scale on the right side of the sheet. The
scales were labeled with min and max. Later subjects carried out the rating with
software. The design of the graphical user interface was similar to the rating sheets. If
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participants took longer than 60 minutes, they were asked to take a break of
approximately 10 minutes before they went on.

4.3 Results

The data was analyzed with a Multiple Factor Analysis (MFA) [15], a widely used
method in sensory profiling. As each participant uses his/her own vocabulary, a multi-
dimensional perceptual space — the verbal descriptors representing the dimensions — is
created. MFA is very similar to Principal Component Analysis (PCA)®: it compares
the individuals’ perceptual spaces and combines them into a single global one. An
MFA provides mainly two outputs: a) The mean location of the test items on the
global space and b) the location of the verbal descriptors on these dimensions.

Major
Minor

Dim 2 (11.99%)
0

Dim 1 (19.95%)

Fig. 2. Graph of the first two dimensions of experiment 1 with an explained total variance of
32%. Shown are the major and minor chord-combination groups and their respective
confidence ellipses for the mean of each group.

* In fact an MFA computes nested PCAs.
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Figure 2 shows a graph of the first two dimensions with the mean location of the
test items and confidence ellipses for the means of major and minor categories. The
non-overlapping ellipses clearly indicate that these categories were rated significantly
different. In total, the first two dimensions declare only 32% of the total variance of
the original data. One reason for this could be that there was little agreement among
participants.

Still the arrangement of the test items on the first two dimensions is sensibly
interpretable in several other ways beyond key*: All chord-combinations of each key,
except the ones featuring B and Db, were rated significantly distinguishable and were
ordered from left to right on dimension 1 according to their distance to C on the circle
of fifths (see Figure 1).
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Fig. 3. Word chart of the significant listener descriptors for the first two dimensions of
experiment 1. The numbers behind the descriptors refer to the listener.

4 The respective graphs cannot be shown here due to space reasons, but are available on
request.
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The second dimension (y-axis) features the faster tempi and the synthesizer-sound
on the upper part, while the lower part primarily contains the 30 bpm tempo and
violin- and piano-sounds. The instrument synth was rated significantly higher than
violin and piano, and 30bpm and 120bpm can be clearly separated in the second
dimension.

To identify the perceived emotions the participants associate with these
dimensions, Figure 3 shows the respective word chart of the first two dimensions.
Only those descriptors contributing to both dimensions with an R2 = 0.5 are plotted,
hence not all descriptors of all participants are present. All verbal descriptors were
originally given in German and translated by the authors, the English translations
shown here may hence convey slightly different meanings. Word charts tend to be
crowded, therefore Table 2 gives an overview of these attributes, ordered by
participant.

The first dimension (x-axis) features positive descriptors on the left side (excited,
happiness, confidence, euphoria, harmonic, pleasant, calming, etc.), and negative ones
on the right side (fear, horror, menacing, aggressive, irritating, unpleasant, depressed,
etc.). This conforms very well with the concept of "valence" in emotional psychology
[2, 4]. The second dimension (y-axis) does not contain many descriptors (which
results in its low explained variance), but they are clearly interpretable: the lower part
shows descriptors of low activity, such as: calming, pleasant, harmonic, but also grief,
thoughtful, depressed and unpleasant. The upper part contains descriptors that are
clearly active, for example, aggressive and excited. This again conforms with another
well-known concept: arousal [2, 4].

Table 2. Significant descriptors contributing to dimensions 1 and 2 of experiment 1. The
numbers behind the descriptors refer to the listener.

Attribute Attribute Attribute
threatening claustrophobic_7 calming_18
aggressive Euphoria_10 light_18
depressed_2 Joy_10 cheerful_20
cheerful_2 Power_10 Hope_20

enthusiastic_2
friendly_4
full_of_suspense_4
weighing_down_4
euphoric_5

Joy_6

pleasant_7
harmonic_7
confusing_7

unpleasant_7

self-confidence_10
pleasant_10
unpleasant_10
bright_12
worrying_12
Agression_13
irritating_13
bright_15
euphoric_18

eerie_18

thoughtful_20
Happy_End_20
Grief_20
optimistic_20
threatening_21
threatening_21
Confidence_23
Fear_23
Horror_23
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S Experiment 2

Several participants of experiment 1 mentioned that the test items appeared to be too
short for eliciting distinctive emotions. To assess the effect of longer test items a
second experiment was conducted. The two experiments are comparable in their
procedure, but in this second experiment we made a slight change to the preparation
task for the attribute elicitation. The attribute election procedure itself stayed the
same. Minor changes were the use of a different test facility room and test items.

5.1 Test Facilities

The tests were conducted in the Audio Lab at Fraunhofer IDMT compliant to ITU-R
BS.1116-1 [14], to EBU 3276 and to DIN 15996. Its exact dimensions are 6.90 x 4.60
x 2.70. Two identical K&H O-510 loudspeakers were used in the test, placed at ear
height of the seated subjects. Participants were seated in the sweet spot position. The
arrangement of the speakers and the listening positions are in compliance with ITU-R
BS.1116-1. The changes in test facilities are considered not to bias the results. The
room characteristic is in line with the room characteristics of the first experiment.
Although the test equipment is not exactly the same like experiment 1, the same class
of high quality loudspeaker was used for the tests.

5.2 Test Procedure in Detail

The general procedure of this experiment was very similar to the first experiment (see
section 4): The introductory task of imagining two movies was replaced, because for
some participants the task was too abstract and they had problems understanding the
intention of the attribute elicitation task. Instead, participants were now handed out
five different imagesS, which were taken from the International Affective Picture
System (IAPS)® database. They were asked to explain what emotions these images
elicited and to verbalize the similarities and dissimilarities.

5.3 Results

Experiment 2 was analyzed in the same manner as experiment 1 (cf. Section 4.3).
Figure 4 shows the graph of the mean location of the test items on the first two
dimensions. It is apparent that the explained variance is higher (42.6%) than in
experiment 1 (32%), which can be interpreted as a slightly higher agreement among
the participants on what they perceive.

> The images portrayed: 1) several woodlice, 2) a woman and a child close together, 3) a wolf,

4) a rabbit, and 5) a lonely road through grass-covered plains.
® hittp://csea.phhp.ufl.edu/Media.html
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Fig 4. Graph of the first two dimensions of experiment 2 with an explained total variance of
42,6%. Shown are the major and minor chord-combination groups and their respective
confidence ellipses for the mean of each group.

Considering the position of the test items on these dimensions, the picture is
partially similar to the one of experiment 1: On the first dimension (the x-axis), the
left hand side contains all major chords except one, while the right hand side contains
all minor chords except one. Furthermore’, the items are — as it was the case in
experiment 1 — sorted according to the circle of fifths, with the neighboring chord-
structures on the left hand side and the opposing chord-structures on the right hand
side of each key group. The location of the items on the second dimension (y-axis) is
not as obvious as in experiment 1, but it can be noted that the items rated most
positive on this dimension are the faster ones (120 bpm), while the most negative ones
are the slower ones (70 bpm), and that these groups are significantly different. The
word chart (Fig. 5, see p. 13) of the first two dimensions matches the item location
chart: On dimension 1 (x-axis), positive descriptors can be found on the left hand
side: happy, cheerful, euphoria, impressive, heroic, festive, etc.; negative descriptors

7 As before, the respective graphs cannot be shown here due to space reasons but are available
on request.

88



Liebetrau et al.

are located on the right side of the axis: menacing, danger, loneliness, exhausted,
thoughtful, etc. Compared to Figure 3 the second dimension (y-axis) is not that clearly
marked as in experiment 1, but in general the more "active" descriptors (happy,
cheerful, menacing) are located on the positive side of this dimension, while the
negative side contains mostly "inactive" descriptors: heroic, festive®, loneliness,
exhausted, thoughtful, etc. Again, Table 3 shows all the descriptors significantly
contributing to the dimensions 1 and 2.

Table 3. Significant descriptors contributing to dimensions 1 and 2 of experiment 2. The
numbers behind the descriptors refer to the listener.

Attribute Attribute Attribute
boring_1 Suspense_4 cheerful _8
not_harmonic_1 monotone_5 Depression_9
heroic_2 menacing_6 happy_9
euphoric_2 ominous_6 exhausted_9
menacing_2 promising_6 Loneliness_10
depressing_2 carefree_6 Euphoria_10
Success_3 delighted_7 festive_10
Danger_3 thoughtful _7 Party_mood_10
annoying 4 sad_7 impressive_10

In summary, the location of the items on these dimensions and the respective
descriptors concur with experiment 1 in that the first dimension can easily be
interpreted as "valence". In the case of the second dimension, it seems that the
participants knew what they wanted to rate, but then had problems to actually discern
the items. This is not surprising as the difference in activation between 120 and 70
bpm is clearly much lower than the difference between 120 and 30 bpm, as it was the
case in experiment 1. Nonetheless, the second dimension can easily be interpreted as
"arousal".

® In the case of "heroic" and "festive" it might be argued that these are active descriptors, but

the German connotation of the original descriptors is more that of a ceremonial atmosphere.
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Fig. 5. Word chart of the significant listener descriptors for the first two dimensions of
experiment 2. The numbers behind the descriptors refer to the listener.

6 Conclusion and Further Work

In this paper, we propose and investigate FCP as a test method to overcome
drawbacks of common self-report methods, to assess the emotional state of a subject
during music perception. By applying FCP, subjects define individual attributes
(emotional terms) by themselves. The rating of the intensity of the emotional
experience during music perception is done with the help of adjective scales, where
for each subject their individual defined attributes are used as labels. To prove the
feasibility of FCP for the evaluation of emotions elicited by music and to assess the
selection of suitable test stimuli, two experiments were carried out.

The results of experiment 1 showed that the subjects rate the emotional impression
according to dimensions of valence and arousal, which are commonly proposed by
emotional psychology. Furthermore, simple major and minor chord combinations
could directly be linked to the dimension of valence, with the participants being able
to sort the chord-samples according to the circle of fifths. The second dimension
features the faster tempi and the synthesizer-sound on one side, while the other side
primarily shows the 30 bpm violin- and piano-sounds. This leads to the conclusion
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that the second dimension represents “arousal”. Although the detailed analysis shows
clearly interpretable results, the results only declare 32% of the total variance of the
system. This further leads to the conclusion that there is rather large disagreement
between the participants on what they perceive, and the "least common denominator"
is fairly small.

Verbal comments of the participants led to the assumption that the musical phrases
were too short to elicit emotion. Experiments examining the lower bound of length in
which emotions can be perceived have been conducted, e.g., [19, 20], finding that
excerpts as short as 250-500ms are sufficient to elicit emotions. However, these
studies examined emotions on a very basic level, reducing the spectrum to a binary
happy/sad decision [20] or neutral/moving [19]. Thus, it remains unclear whether
participants are able to precisely classify their perceived emotions in a multi-
dimensional space with such short pieces. Furthermore, the studies used excerpts of
classical and well-known musical pieces. This poses the question whether participants
rated their actual perceived emotions or rather their remembered emotions based on
familiarity.

To prove the hypothesis that longer stimuli are more easily classified, a second
experiment was conducted where longer test stimuli were used. While the items of
experiment 1 consisted of two chords with a maximum item length of 7s were used,
experiment 2 had items with nine chords per item and a maximum length of 10s.

The explained variance of the first two dimensions in experiment 2 is slightly
higher than in experiment 1 with 42.6%, which can be interpreted as a slightly higher
agreement among the participants on what they perceive. In general, the results of the
first experiment were confirmed. Unfortunately, the extension of the musical phrases
did not lead to a significant higher explained variance.

Although the results are easily interpretable and sensible, the low explained
variances of the results are puzzling. One explanation could be that emotion is a very
subjective experience, which is not easy to describe or indicate.

Furthermore, the test method cannot solve the problem of awareness of an emotion
as mentioned in [2, p. 210 et seq.]. When defining an emotion as consisting of several
components, it is questionable which part of an emotion is accessible at all and which
part is accessed in a self-report. This could be another reason for the low explained
variance of the test results.

FCP is able to approach two of the four problems raised by Zentner ([2, p. 210 et
seq.], also see Section 2): Because no fixed responses are given, participants do not
feel the need to comply with certain emotional concepts and will not feel demand
characteristics. Secondly, the difficulties in verbalization of musical emotions are
partly compensated by FCP’s ability to directly compare and group correlating
descriptors of all participants. Hence, it is not so important that the participant is able
to express emotions with a complex vocabulary, but rather that he/she is able to
discern and rate the perceived emotions.

To further investigate the dependency of the linguistic abilities on the rating and
see if FCP really solves the addressed problem, we plan to conduct new experiments,
using the same test items as in experiment 1. The next experiment will use a pictorial
rating system called SAM (Self-Assessment Manikin, Fig. 5) [16], a common and
well-researched rating system in emotional research. This rating system assesses the
three dimensions valence, arousal and dominance in a non-verbal way and is thus
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suited to be used by children and/or non-native speakers. The participants of this
experiment will consist of “Amazon Mechanical Turk” (MTurk) workers®. This so-
called “clickworker”-platform allows to offer easy tasks that can be solved with a few
mouse-clicks, such as annotation tasks, to registered workers. Amazon MTurk is a
cheap and efficient way to have many test items annotated by a lot of people in order
to build a ground truth. The results will be compared to those of the experiments
already conducted.
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Abstract. This paper will discuss the development of the SUM tool, a user
library with a graphical user interface within the computer-aided composition
environment of PWGL, aimed at the integration of image and sound. We will
discuss its internal structure, consisting of image layers, mappers, and paths.
We will explain the mapping process, from the retrieval of graphic data to its
translation into audio parameters. Finally, we will discuss the possible
applications of SUM in both image sonification and computer-aided
composition, resulting from this structure.

Keywords: image sonification, graphical computer-aided composition, open
graphic score, structure

1 Introducing the SUM Tool

The SUM tool allows the integration of image and sound through a graphic user
interface. It was originally developed as an audio-visual representation tool in urban
planning [1], an applied discipline involving the spatial composition of temporal systems.
The traditional use of multiple 2-dimensional graphic maps makes it difficult to represent
dynamic flows, as well as synthesise multiple layers due to legibility constraints. Thus
SUM provides a more temporal approach to spatial composition through sonification — the
representation of data through auditory means [2].

Fig. 1. The sonification of multiple urban maps in the SUM tool

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
19-22 June 2012, Queen Mary University of London
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Due to its design application, SUM supports both the importation and creation of
multiple image layers (raster and vector) as data input. This data is then retrieved
through the drawing of one or more vector paths over the areas of interest, and their
graphic attributes mapped to sound attributes results in the generation of audio parts.
Thus SUM supports a multi-dimensional spatio-temporal approach to image
sonification, which sets it apart from other image sonification toolkits such as
SonART [3].

As a user library within PWGL [4], a widely-used Lisp-based visual computer-
aided composition environment, SUM can also be used as a graphical composition
tool. PWGL’s internal music notation editor strictly allows the description of object-
based graphical scores [5], rather than the pixel-by-pixel exploration of a score as an
image. Other graphical computer-aided composition environments, such as HighC [6]
and lannix [7], inspired by Xenakis’ UPIC system [8], support the drawing of graphic
objects but are limited to a single horizontal time axis. However SUM, with its ability
to create and read objects along multiple spatio-temporal paths, allows an image to be
composed and played as an open graphic score from multiple perspectives.

This paper will discuss the structure of SUM, which supports a multi-dimensional
approach to both image sonification and graphical computer-aided composition.

2 The Structure of SUM

The SUM tool consists of three main components: images; paths; and mappers. The
following section will explain each of these components and their inter-relationships.

2.1 Images

SUM uses images as data-sources. Each image is described by a ‘color-key’, in which
each color of interest is allocated an arbitrary numerical value, to be referenced in the
sonification mapping process. SUM supports the superimposition of multiple images,
which allows the synthesis of overlapping graphic information, visualisable as a ‘3D’
matrix of data as shown in figure 2. A group of data-sources is called a ‘dataset’, from
which any number of image layers may be drawn upon as data-sources in the
mapping process.

SUM allows the co-existence of raster and vector images. The flexibility of raster
importation permits any visualization, including that produced by other software, to
be sonified. The tool’s vector drawing ability allows it to be used as a computer-aided
design tool, such as Adobe Illustrator or AutoCAD, with graphic changes able to be
made internally.
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Fig. 2. Visualisation of a ‘dataset’ of 2D images as a 3D matrix

2.3 Paths

A path is responsible for defining the connection between the graphic space and
musical time. It is a spatio-temporal object consisting of the following qualities:
location; direction; delay; duration; and speed. The path is drawn as a vector polyline
by the user over the area of interest, and then assigned a speed and delay. SUM
supports the co-existence of multiple paths of various speeds and delays.

2.2 Mappers

A mapper is responsible for defining the sound output of the mapping process. It
translates the graphic attributes retrieved from the image into discrete audio events,
defining the sound attributes of pitch, volume, articulation and timbre. The definition
of each sound attribute is independent of another. Thus one mapper can refer to
multiple data-sources. A group of mappers is termed a ‘mapper-group’.

i mapper ;

Fig. 2. The SUM mapper: one possible definition of sound attributes by data-source

96



Sara Adhitya and Mika Kuuskankare

3 The SUM Mapping Process

The SUM mapping process from image to sound is a two-fold process: graphic data is
retrieved from a data-source by a path; it is then applied to a mapper for
transformation into audio attributes.

3.1 Data Retrieval

The SUM mapping process is path-driven. Data is retrieved through the drawing of a
vector path on an image, and the sampling of the image along this path. The vector
path is rasterized according to Bresenham’s line algorithm [9] in order to break it
down into discrete sampling points, while retaining the order of the points to
determine the direction of the path along which the time progresses. Thus for a line
extending upwards and to the left, the pixels would be sampled in the order shown in

figure 3.

Fig. 3. Diagram of Bresenham’s line algorithm, showing sampling order

Each raster map image is then sampled pixel-by-pixel to retrieve the data of
interest per each sample-point along the path. The user-defined start-time and
playback speed determines the temporal structure of the mapping process.

3.2 Parameter-Mapping

After retrieval of the graphic information along a path, these values can be applied to
a mapper in order to generate the desired sound attributes of an acoustic signal (pitch,
volume, articulation, and timbre). The parameter-mapping process is defined by
assigning a legend, from a given data-source, with a sound value. This can be
implemented either directly through the graphic user interface or by using Lisp for
more complicated mappings.

Application of a path to a mapper produces a set of sound parameters, which can
then be used to drive a wide-variety of internal or external instruments. PWGL has its
own internal synthesizer as well as MIDI and OSC output. This allows connection to
external sound synthesis engines such as Max/MSP and flexible possibilities for
sound output.

It should be noted that a path and a mapper are independent of each other in terms

of data-source/s. Thus different mappings can be generated from the same dataset of
data-sources.
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4 The SUM Compositional Process

This section will relate the SUM process to the compositional process. Here we
introduce the concept of the SUM score, consisting of multiple SUM parts.

A SUM part is a sequence of audio events, the qualities of which are defined by
the retrieval of data from an image with a path, and applying this path to a mapper.
Thus the generation of a SUM part is a path-driven process. Application of multiple
paths to one mapper will produce multiple SUM parts of the same timbral quality, but
of variable temporal structure. Application of the same path to multiple mappers will
produce multiple SUM parts of the same spatio-temporal quality, but of variable
timbral qualities. Different combinations of paths and mappers allow the generation
of numerous SUM parts from the same dataset. Figure 4 shows one possible network
of paths and mappers producing a SUM score.

Fig. 4. An example of a SUM score - one possible network of paths and mappers

5. Applications

The flexibility of the mapping process established between image and sound has
the potential for application in both image-based sonification and computer-aided
composition.

51 Image Sonification — Playing of ‘Visual Music’

The SUM tool, with its image-based input and user-defined mapping process,
supports the sonification of any color-coded image. This means that any bitmap image
can be sonified according to its own color-key.

One artistic application is in the playing of ‘visual music’ — the generation of
musical concepts such as rhythm through graphic means. One visual composition
technique is through the spatial arrangement of colour, as explored by Piet Mondrian
in his series of paintings entitled ‘Composition’ utilizing the primary colours of red,
yellow and blue. Here we demonstrate the sonification of his work Woogie Broadway
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Boogie (1942-43), in which he attempted to express the musical rhythm of the ‘boogie
woogie’ through colour, and in addition along a gridded structured resembling the
streets of New York[10]. By separating the painting into each of its colours, and
mapping each colour to a different sound parameter, such as pitch, volume or timbre,
we can not only see but listen to this rhythm along each of the paths.
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Fig. 5. Sonifying the colour rhythms of Mondrian’s Broadway Boogie Woogie [10]

Through the sonification of such visual artworks in SUM, we can explore the
application of visual composition techniques to musical composition. We can also see
the potential for SUM to play any image as an open graphic score. In the following
section, we will demonstrate the use of SUM as a tool for computer-aided
composition, leading to the generation of a graphic score.

52 Computer-aided Composition — Generation of a Graphic Score

The SUM tool, with its vector drawing capability, also supports the creation of
graphic scores. The user-defined mapping process means that a composer is free to
create his own graphic-sound vocabulary. It supports the creation of a multi-layered
graphic score (ie. multiple spatial dimensions), and its playback from any direction,
time and speed (ie. multiple temporal dimensions).

As an example, we will show how the graphic score created by Rainer Wehinger for
Gyorgy Ligeti’s Artikulation, can be generated in SUM and used to explore its
playback.

{1 11 =
- L = = | e
= - .-:'7 - @

{l E o | | —] -

=

i == |ill 9

Fig. 6. A section of Wehinger’s graphic score for Artikulation (Ligeti) with accompanying
colour-coded legend [11]
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Wehinger represented each of Ligeti’s sound objects graphically, in terms of different
forms and colors (see figure 9). As different colors are read as different sound
objects in SUM, we can structure our SUM score similarly.
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Fig. 7. A possible SUM score structure of Artikulation

The subsequent reading of our SUM score, by any number of user-defined spatio-
temporal paths, frees it from its intended linear reading from left-to-right. As seen in
figure 8, the same segment of Wehinger’s score can be played from different
directions and at different speeds.
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Fig. 8. Different ways of reading Artikulation — linearly as a pianoroll or as an open score

This opens up new possibilities for existing graphic scores to be played in
alternative ways and to generate new musical results.

6. Conclusions

As seen above, the structure of the SUM tool supports the integration of image and
sound in multiple spatial and temporal dimensions. Growing from the objective to
sonify urban maps for a more temporal representation of urban systems, as seen in
this paper, we can also use it to compose a multi-dimensional graphical musical score
and play it back from numerous perspectives. The flexible structure of SUM allows
the audio-visual representation of multiple spatio-temporal relationships in general,
from an urban system to a musical score.

Future improvements include the automatisation of the retrieval of the image color

palette, and thus the generation of the color-key. We also aim to improve our path-
sampling approach in order to more accurately determine the duration of a path.
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Abstract. For the majority of Chinese people, Gongchepu, which is the Chinese
traditional musical notation, is difficult to understand. Tragically, there are
fewer and fewer experts who can read Gongchepu. Our work aims to interpret
Gongchepu automatically into western musical notation-staff, which is more
casily accepted by the public. The interpretation consists of two parts: pitch
interpretation and rhythm interpretation. The pitch interpretation is easily to
solve because there is a certain correspondence between the pitch notation of
Gongchepu and staff. However, the rhythm notations of Gongchepu cannot be
interpreted to the corresponding notations of staff because Gongchepu only
denotes ban (strong-beat) and yan (off-beat), and the notations of duration are
not taken down. In this paper, we proposed an automatic interpretation model
based on Conditional Random Field. Our automatic interpretation method
successfully achieves 96.81% precision and 90.59% oov precision on a
database of published manually interpretation of Gongchepu.

Keywords: Musical notation, Gongchepu, interpretation, nature language
processing, Conditional Random Field

1 Introduction

Chinese poetic songs are noted by gongchepu-Chinese traditional musical notation,
once popular in ancient China and still used for traditional Chinese musical
instruments and Chinese operas nowadays. A Gongchepu sample of Chinese poetic
songs entitled Ki§VV Tian-jin-sha is shown in Figurel.

As illustrated in Figure 1, the melodic notations of Gongchepu are noted at the
right side of the lyrics, consisted of pitch notation and rhythm notations, which are the
two basic characters of a musical notation. Therefore, the interpretation consists two
sections, one is pitch interpretation and the other is rthythm interpretation.

This work is supported by the NSFC(No. 60933004).
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Figure 1. Gongchepu of Tian-jin-sha

For the pitch interpretation, we firstly introduce the details of pitch notations of
gongchepu. Pitch of each note in gongchepu is denoted by 10 Chinese characters: &
hé,ld si — yi, I shang, R che, 1. gong, L fén, 75 lig i wa, 24 yi1.
They are equivalent to the notes of solfege system: sol, la, ti, do, re, mi, fa, sol, la, ti.
& hé,l sT — yiare pitched an octave lower /N liQt 7. wa, 4o yi. gongchepu is
named by the character . gong and R ché.

Once we take I~ shang as the fixed pitch c', the range of the 10 characters is g-b'.

Gongchepu uses the following notations to note other notes in different octaves:
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a) Octaves higher: a radical “4 * is added for one octave higher. For example, we
use “fk” to represent an octave higher “_I-”. Similarly, the radical “4 ” is
added to represent two octaves higher.

b) Octaves lower: an attached stroke is added to the ending of stroke of the

character to note an octave lower. For example, we use “J; ” to show an

octave lower “ |-,
Likely, two attached parts are added to represent two octaves lower.

Based on the rule above, the pitch notations of gongchepu can be interpreted
directly to the corresponding notations of staff.

For the rhythm interpretation, we explain the rhythmic rules of gongchepu.
gongchepu denote the beats by the following notations: The mark “. ” represents
the stronger-beat which is called ban, while the notation “. ” represents the off-
beat called yan. The marks are put at the upper right corner of the first note of a beat.
[lustrated from Figure 2 which is written horizontally for convenient reading, we can
see the notes separated into beats with the ban and yan.

ban yan

1 1
T°T AlESE 1L Fls ~ =S
J i) )

Beat 1 Beat 2 Beat 3 Beat 4

>k

Figure 2. Ban and yan in gonchepu

Rhythmic structure of gongchepu is formed by the regular combination of ban and
yan. For example, the cycle of 1 ban and 1 yan forms a 2/4 mater and cycle of 1 ban
and 3 yan forms a 4/4 mater. However, the duration of each note, which should be
noted in staff, cannot be specified by the rhythmic mark of ban and yan. In this case,
the rhythm notations cannot be interpreted to the exclusive corresponding notations.

For example, if 2 notes are in 1 beat, it can be sung as U ,u.orLr VIf3

notes are in 1 beat, we could get 4 results:w,m,m and 2 . But

whichever should be sung is not restrict by the rhythmic rules of gongchepu and can
be improvised by the singers. Does this mean that the rhythm in Chinese music is not
important as Sachs [1] suggested in his studies of the rhythms of world music? Yang
[2] corrects this misconception with the view that in order to perform the music in a
proper way, the improvisations should have a certain fixed pattern. In other words, the
rhythm of Chinese traditional music does have a certain pattern while the notation of
duration of each note cannot be seen in the gongchepu.

Despite of all the analysis of the organizational structure of Chinese poetic songs in
the past years, almost nothing has been published on the internal rhythmic structure.
This is because there are few experts can read gongchepu nowadays, and they only
teach a small group of students face to face.
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In this paper, we proposed a stochastic model to interpret gongchepu into staff
automatically. Dealing with the rhythm rules of gongchepu, the interpretation is
similar to part-of-speech tagging in Natural Language Processing. This allows us to
use Conditional Random Field to solve the interpretation problem. In recent years, a
few musical notation researchers such as Qian [3] and Zhou [4] published their
interpretation of the Chinese poetic songs collection, where the gongchepu is
originally used. We implement our interpretation model on a database their published
manually interpretation.

The rest of this paper is structured as follows. We begin with modeling the
interpretation problem in section 2. Section 3 introduces the features for the statistical
model. Section 4 provides the experimental settings and results. Finally, we draw the
conclusion and future discussion in section 5.

2 Automatic Gongchepu Interpretation Model based on
Conditional Random Field

In this section, we firstly formulate the interpretations problem. With the
formulation, the interpretation problem is transform to a sequence tagging problem
which is similar in natural language processing. Then we introduce the most widely
used natural language processing model including Hidden Markov Model and
Conditional Random Field to solve the interpretation problem.

2.1 Formulations of Rhythm Interpretation

We begin to formulate the interpretation problem by reviewing the rhythm rules of
gongchepu. The rhythm marks including ban and yan are put at the upper right corner
of the first note of a beat. Thus, notes are separated into beats with the ban and yan.
We denote the beat sequence by B),B.,...,B, Taking the “Tune of Fresh Flowers” as
an example, beats separations are shown in Figure 3.

T AE AL AL Hf S /\"ﬂ 7N
B: B>

Figure 3. Beat separation by marks of ban and yan

However, the duration of each note, which should be noted in staff, cannot be
specified by the rhythmic mark of ban and yan. In this case, the rhythm notations
cannot be interpreted to the exclusive corresponding notations. For example, if 2

notes are in 1 beat, it can be sung as U ,uoru . We indicate the rhythm
pattern of each beat by R;, R, ..., R,.

Interpret the notes beat by beat, the interpretation task is illustrated in Figure 4.

In spite of the missing information of the duration of each note, the length of note
duration in a beat is relatively fixed. Thus, rthythm patterns of each beat are limited. In
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this paper, we conclude 37 patterns p;, p.,...,p;3; which are used in Chinese poetic

music. Thus, the value of R, =1, 2, ..., n is limited in the patterns set P={p,,
P2»---al737}-
N ] o AN Y
R B | EA AR A 31 VAYVAY FilVA
B B: B3 Bs
R1 Rz Rs Ra

Figure 4. Interpret the rhythm beat by beat

By the above denotations, the interpretation transform to a tagging problem: when
the beats sequence {B;,B,,...,B,} is observed, we are required to tag the sequence by
the rhythm patterns from a limited set P. This is very similar to the sequence tagging
problem in natural language processing.

Once the features F(B,)={fi(B)), fA(B),.., fu(B;))} of each beat are extracted,
statistical language processing models such as Conditional Random Field can be
applied to the interpretation.

2.2 Hidden Markov Model

HMM is well-understood, versatile and have been successful in handling text-
based problem including POS tagging Kupiec[5], named entity recognition (Bikel[6])
and information extraction (Freitag & McCallum[7]). In the rhythm interpretation, the
HMM is constructed based on the following assumptions: a) The rhythm pattern
sequence { R;, Ry, ... , R, } forms a Markov Chain; b) The beats B;,B,,...,B, are
independent; c) for each rhythm pattern R,, it only depends on its corresponding beat
B,. The graphical structure of HMM is shown in Figure 5.
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Figure 5. Graphical structure of HMM in rhythm interpretation

2.3 Conditional Random Field

Dealing with the multiple interacting features and long-range dependencies of
observation problems, we would be inclined to use Conditional Random Field which
is introduced by Lafferty et al [8]. Conditional Random Field have been proven to be
efficient in handling different language POS tagging such as Chinese (Hong, Zhang,
et al.[9]), Bengali(Ekbal, Haque, et al.[10]) and Tamil(Pandian & Geetha[11]), etc.
Compare to HMM, CRF can handle the following undirected graphical structure
which is shown in Figure 6.

Figure 6. Graphical structure of CRF in rhythm interpretation

Conditional Random Fields are undirected graphic models. Giving an undirected
graph G=(V,E). Let C be the set of cliques (fully connected subsets) in the graph.
Take the vertex of V as random variable we define the joint distribution of the vertex
of V as follows:

1

Pr) = —TTe(r.) (1)
Z ceC

Here, X, is the vertex set of a clique ¢c€C and Z is the normalizing partition

function. ¥ is called a potential function of c¢. The potential function can be described
as the following exponential form:

¥(r,) = eXp(Z A,1.(X, )j @)

In the above model, the undirected graph consists of observations B,,B,,...,B, and
states R;, R,, ... , R,. Cliques from the above graph consist of two consecutive
vertexes which are separated into two classifications: vertex of two consecutive states
R:,R; and vertex of each states R; and its corresponding observation B;. Thus, the
exponential form of potential functions can be denoted as the following two functions:

¥k, ,, R,) = exp(z AR R )j 3)
k

and
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¥(r, B,) = eXp[Z ws, (R, B, )j 4)
k

According to the definition of (1), we get the conditional probability distribution:

L 7 T
— 1., Y\®,_,, R, o, P\R,, B,
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(5) can be written as:
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Here f; is the feature function and g, is the state feature functions. 4;, 1, ..., Ap uy,
..., dr are parameters to be estimated from training data.

To apply the above models, we should extract the features of each beat, which are
discussed in the following section.

3  Feature Selection for Automatic Interpretation

Wise choice of the features is always vital to the performance of the statistical
models. Chinese traditional music does not have harmony, polyphony, or texture.
Thus, we only concern about the melody and select the proper features based on the
opinions of the Chinese opera performance as follows.

e Notes Sequence (NS): The higher and lower octave symbols expand the
10 characters in gongchepu into 38 characters. Encoding these characters,
we can get the original text features of the notes sequences.

e Numbers of the Notes(NN): Sequence of the notes numbers forms the
approximately rhythmic structure. Rhythmic pattern is usually related to
the notes number of previous beat. In the example of “Tune of Fresh

Flowers” in figure 5, we consider the third beat “757 & > which is a three-
note beat and the previous beat has four notes. Therefore, it preferred to

determine the rhythmic pattern as LQ‘rather than LLFto avoid a too
compact rhythmic structure.

e Pitch Interval Direction and Position(PIDP): The concept of “interval
direction and position” is introduced by Williams(1997) for melodic
analysis. Williams use “+” for rising direction of the pitch interval and “-”
for the falling direction. Moreover, pitch interval is measured by
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chromatic scale. For example, the pitch interval direction and position of
the section of “Tune of Fresh Flowers” is illustrated in Figure 7.

. . =_
S I

+3 0 -3 -2 0 +2

Figure 7.Pitch interval direction and position of “Tune of Fresh Flowers”

4  Experimental Result

The experiments of gongchepu interpretation were based on the gongchepu of Sui-
Jin-Ci-pu collected by Xie[12] which collected poetic songs of Tang, Song and Yuan
Dynasties of ancient China. Sui-jin-Ci-pu collected over 800 songs, but only a few of
them have been interpreted. We trained our statistical models based on Qian [5]’s
manually interpretation. We selected 60 songs from the 96 of Qian’s interpretation to
set up our database. The database included 969 melody segments and amounted to
6347 beats. According to the different number of notes within a beat, the beats were
separated into 6 types. The dataset was randomly divided into two parts with similar
distribution of different types of beats. 3174 beats were used as training data while the
left 3173 were reserved for test.

Table 1: Data size of gongchepu

Numbers Trainin Testing Total
of notes with | g data size | data size data size
in a beat

1 1187 1017 2204

2 1110 1322 2432

3 647 676 1323

4 210 152 362

5 19 5 24

6 1 1 2

Total 3174 3173 6347

Table 1 shows the data size of the gongchepu for training and testing. In the table,
we can see there are only 24 beats with 5 notes and 2 beats with 6 notes. 99.59% of
beats in the dataset have more than 4 notes.

Two method Hidden Markov Model (HMM) and Conditional Random Field (CRF)
which were introduced in Section 2 are applied using three single features: notes
sequence (NS), numbers of notes (NN), pitch interval position and direction (PIDP)
and their combinations: NS+NN, NN+PIDP, NS+PIDP, NS+NN+PIDP. The
experimental results of interpretation precision and oov precisions are shown in Table
2.
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Table 2. Interpretation precision and oov precisions

precision 00V precision

Features HMM CRF HMM CRF

NS 84.34% 87.86% 47.85% 67.62%
NN 83.43% 85.55% 68.43% 78.84%
PIDP 84.82% 85.97% 57.92% 77.53%
NS+NN 85.64% 89.67% 75.67% 80.23%
NN+PIDP 86.74% 89.56% 77.28% 81.55%
NS+PIDP 85.49% 89.89% 76.42% 79.88%
NS+NN+PIDP 87.38% 90.05% 78.27% 82.03%

The results from table 2 shows that CRF get better performance than HMM and
achieve 90.05% precision and 82.03% oov precisions using the combination feature
of NS+NN+PIDP.

We analyzed the oov beat and found that most interpretation error occurred in

handling the beats which have 3 notes. For example, Lg is always misinterpreted

into LU‘
After rhythmic pattern tagging, we can interpret gongchepu automatically. The

interpreted staff of the gongchepu of Ki§¥) Tian-jin-sha in Figure 1 is shown in
Figure 8.

KW B

SEL

&
ST
=+

4f)
' T T
f } t .‘ } —
r F —F o T
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Figure 8.Interpretation of Tian-jin-sha

5 Conclusions and Future Discussions

This paper proposed an automatic interpretation of gongchepu. We apply Hidden
Markov Model and Conditional Random Field to solve the interpretation problem.
Three single features: notes sequence (NS), numbers of notes (NN), pitch interval
position and direction (PIDP) and their combinations: NS+NN, NN+PIDP, NS+PIDP,
NS+NN+PIDP are selected for the interpretation model.
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Experimental results showed that the precision of interpretation by CRF achieved
90.05% and the oov precision was 82.03%. It will be very helpful for reading and
singing the Chinese poetic songs noted in gongchepu. Furthermore, our work will
have positive influence on the protection of the ancient Chinese traditional culture, for
the number of the experts who are able to read gongchepu is decreasing and the way
of singing Chinese traditional poetic songs will most likely fade in the following
generations.

Obviously, the sample size of the gongchepu database (6347 beats) is much
smaller than the corpus in NLP. However, music is more abstract than natural
language, and music is an easier way for listener to understand and accept, while
natural language may cause many unpredictable misunderstandings. Thus our work,
training on the musical notation database, which is much smaller than the NLP corpus,
is still credible.

Melodic features only bring a superficial knowledge in understanding the rhythm
of gongchepu. Actually, Chinese language plays an important role in the development
of Chinese music. Thus in the further research, we will take the linguistic features in
consideration.

References

1. Curt Sachs: Chinese Tune-Title Lyrics. The Rise of Music in the Ancient World. London
(1943)

2. Yinliu Yang: Gongchepu-qian-shuo '"Introduction of gongchepu". Renmin yinyue
chubanshe. Beijing (1962)

3. Rengkang Qian: Qing-jun-shi-chang-qian-chao-qu "Interpretation of Suijin cipu". Shanghai
yinyue chubanshe, Shanghai(2006)

4. Xuehua Zhou: Nashu-ying-qu-pu-jian-pu-ban "Interpretation of nashu". Shanghai jiaoyu
chubanshe. Shanghai ( 2008)

5. Julian Kupiec: Robust part-of-speech tagging using a hidden Markov model. Computer
Speech and Language, 6, 225-242. (1992)

6. Daniel M.Bikel, Richard Schwartz, & Ralph M.Weischedel: An Algorithm that Learns
what’s in a name. Machine Learning Journal, 34, 211-231. (1999)

7. Dayne Freitag & Andrew McCallum: Information Extraction Using HMMs and Shrinkage.
In Papers from the AAAI-99 Workshop on Machine Learning for Information Extration, pp.
31-36 Menlo Park, California. AAAL (1999)

8. John Lafferty, Andrew McCallum and Fernando Pereira: Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of the
Eighteenth International Conference on Machine Learning. (2001)

9. Mingcai Hong, Kuo Zhang, Jie Tang & Zijuan Li: A Chinese Part-of-speech Tagging
Approach Using Conditional Random Fields. Computer Science, Vol. 33, No. 10, pp. 148-
152. (2006)

10. Ekbal Asif, Rejwanul Haque, and Sivaji Bandyopadhyay: Bengali Part of Speech Tagging
using Conditional Random Field. In Proceedings of Seventh Inter-national Symposium on
Natural Language Processing. Thailand ( 2007)

11. S. Lakshmana Pandian, T. V. Geetha: CRF Models for Tamil Part of Speech Tagging and
Chunking. Proceedings of the 22nd International Conference on Computer Processing of
Oriental Languages, 11-22. 42. (2009)

12. Yuanhuai Xie: Sui-jin-ci-pu “A Collection of Song”. (1844)

111



Music Dramaturgy and Human Reactions: Music as a
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Abstract. The main topic of this paper refers to how music communicates and
to what it communicates, either considering or not the usage of modern
technologies. Based on the categorisation of music dramaturgy proposed in
one of his pasts articles [1][2], the author sets the main focus on what happens
in the mind of listeners (perception) during a performance (and afterwards) of
music rather than considering only the perspective of the creator (intention).
Thus, the article not only connects the fields of neuroscience with that of
semiotics, but also is a reflection from a philosophical perspective of how the
dramaturgy of music affects the perception by arousing reactions (emotions
and thoughts) in the audience.

Keywords: Dramaturgy of Music; Music semiotics; Neuroscience; Prototype
Theory; Exemplar Theory; Multiple-Trace Memory model; Categorisation.

1 Introduction

The subject of music dramaturgy has been treated across time in different ways
and from different perspectives; in the last two decades Landy and later Weale
have performed a fundamental research in the field [3][4][5]. The research
presented in this article, although related to Landy and Weale, focuses on music in
a general and broader sense. Fundamentally, the research I have carried out so far
[1][2] includes questions seeking for the clarification of, for example, how the
relationship creator-listener works in musical situations or, what happens in the
mind of the listener whilst perceiving a piece of music. The research presented
herewith is therefore a further development of the classification of music
dramaturgy presented in my article Music and Technology: What Impact Does
Technology Have on the Dramaturgy of Music? [1]. Figure 1 summarises the
complete typification of music dramaturgy proposed therein. For the current article
though, the main subject focuses specifically on the relationship between music
and human reactions, giving special attention to how the human brain reacts to
musical stimuli.

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
19-22 June 2012, Queen Mary University of London
All rights remain with the authors.
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MUSIC DRAMATURGY

INTRINSIC
(Inherent to the music)

INTENTION

A PRIORI A POSTERIORI
Origin of the
dramatic elements Dramatic element.
precedes the not evident to the,
music. listener. Extra

information needed
for its complete
dramatic
understanding.

(a) STAGE DRAMA

EXTRINSIC
(Emerging from the music)
PERCEPTION

Understanding of the
dramatic intention of a piece
of music by the listener,
regardless of whether it
matches partially,
completely or not at all the
intended intrinsic
dramaturgy. Consequence
of the reactions aroused in
the listener's mind through
the act of listening to music.

Based on a libretto
to be represented
(e.g. opera)

(b). NON STAGE DRAMA

Based on e.g. poems, stories, novels, legends, etc.
without stage representation (e.g. Lied)

(c) PRECONCEIVED MUSICAL FORMS

Music composed or performed/improvised following some set
of rules. Attention directed to the development of the ideas (the
plot) given by the preconceived form (e.g. sonata form)

Fig. 1. Music dramaturgy: different types and subcategories.

2 Music as a Means for Communication: Musical Discourse and
Human Reactions in a Musical Communication Chain

To begin with, it is important to define exactly what is meant with music and music
dramaturgy in this context. Even though the concept of music has been defined and
redefined across time, the following definition by Levitin is not only rather
comprehensive and clear, but it also addresses my fundamental concerns as a
composer, especially considering how human perception regards some sounds as
musical or not:
The difference between music and a random or disordered set of sounds has to do with
the way these fundamental attributes combine, and the relations that form between them.
When these basic elements combine and form relationships with one another in a
meaningful way, they give rise to higher-order concepts such as meter, key, melody, and
harmony. [6]
In [1], I have already defined the dramaturgy of music as:
As we can see, the word ‘dramaturgy’ has its origin in the German word Dramaturgie
and its roots can be found in the ancient Greek word dramatourgia. However, the main
term to consider should be drama: its meaning is always related to the concepts of
‘action’ or ‘event’. Aristotle, in chapter 3 of his On the art of poetry, describes drama as
something ‘being done’. The word dramaturgy implies the actual composition or

113



‘arrangement into specific proportion or relation and especially into artistic form’ as
well as the knowledge of the rules for gathering these concepts onto a (normally) known
and preconceived structure (originally, the Greek tragedy was meant hereby).
Ultimately, we can define the dramaturgy of music as the way in which the creator
and the listener represent in their minds the flow of a musical occurrence (that is the
development of one sonic-event coming from a previous one and leading to the next),
which constitutes an entity (ontologically) that as such is unique in itself, as might also
be its mental representation (psychologically); however, both cases of ‘uniqueness’
might not be most of the time quite the same, as we shall see later. The series of sounds
organised according to the rules of each and every musical ‘being’ (the word ‘being’ is
here used ontologically, meaning anything that can be said to be immanently, as not
always might we refer to a composition when confronted to music-listening, mostly if
we consider music from outside the western culture), are the events involving an
‘interesting or intense conflict of forces’, as seen above in one of the definitions of
dramaturgy. And, as in the case of the original meaning of the word in ancient Greece,
these forces do happen during a performance. The forces in place are the
emotions/thoughts aroused by the sounds of the performance, which produce a mental
representation of what is occurring in the piece of music: its emergent dramaturgy.
From this definition, we can infer, that the subject of human emotions is core to
the field of music dramaturgy. Following the definition of music given above, the
‘basic elements [that] combine and form relationships with one another in a
meaningful way’ are those which need to be communicated in a chain, so the next
step is to present the communication process in a musical situation and all of the
elements taking part in it. The following subsections give an explanation of the
concepts of musical discourse, musical communication chain and human reactions.

2.1 Dramaturgy in the Musical Discourse: The Communication Process

Any imaginable type of music is capable of awaking in the listener reactions such as
thoughts (i.e. mental representations of the sonic events and their subjective
meaning) and emotions, all of which may or may not be in tune to the original
intention of the creator of that particular music. Reception of music dramaturgy can
only be possible if a communicative process is established. This process requires
three elements for its existence: (a) actors involved in the communication process;
(b) medium in which the dramaturgy will be carried; (c) human reactions.

Actors: Medium: Human Reactions:
Music-Creator Musical Discourse Emotions and Thoughts
Music-Recipient

Fig. 2. Communication process in music: minimum elements required.

Hence, in order for music to be in a position to express something, a
communicative process must be established. In this way the creator of a certain type
of music (generally, but not exclusively, the composer), delivers through a process
(the musical performance, meant here in a broad and generic way), a musical
discourse containing the main intentions, which will be finally perceived by a
human-recipient (generally, an audience of listeners). In this communication chain,
the reception may or may not equal the original intention; moreover, the perception
of the musical discourse can even result (as explained in [1]), in a rather opposite
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understanding of the original intention conceived by the music-creator.

Whichever the response of listeners to music may be, this response is generally
called arousal in psychology, which is defined as ‘to rouse or stimulate to action or
to psychological readiness for activity’ [7].! According to this, the act of perception
should produce in the listener diverse reactions, which can mainly be circumscribed
to emotions and further thoughts or reflection of what has been listened to. Arousal
is sometimes also referred to as activation [7].> A communication chain emerges
from this concept as represented in Fig. 3:

Creation: Performance: Reception:

MUSICH y - - MUSIC- N
TUSIC-CREATOR > MUSICAL DISCOURSE > TUSIC RFClPlE\T
(e.g. composer) (audience)
|
\ 4

Reactions:
EMOTIONS and REFLECTION

Fig. 3. Music’s communication chain (first stage).

If the listener is not in a position to experience any reaction at all, this will imply,
that either the event being listened to contained no message at all (i.e. there is no
musical discourse present) or the listener is not in a position to understand the
musical discourse as such. In the first case, the absence of arousal is due to an
objective failure in the chain, as the object missing is outside the mind of the
listener. In the second, on the other hand, the absence of arousal is due to a
subjective failure in the chain, as the musical discourse exists, but cannot be
understood by listeners due to diverse causes such as, for example, cultural
background. This paragraph by Berio clarifies the matter further, mostly at the end:

Music must be capable of educating people to discover and create relations between
different elements (as Dante said in the Convivio, ‘music is all relative’), and in doing
that it speaks of the history of man and of his musical resources in all their acoustic, and
expressive aspects. I'm interested by music that creates and develops relations between
very distant points, and pursues a very wide transformational trajectory (....). The
listener has to be aware that there are different ways of grasping the sense of that
trajectory (....).>

If there is no arousal (a complete absence of any reaction), regardless of which of
the two cases mentioned above is considered, the result will undoubtedly be a
complete failure at the very core of the basic communication principle. If music
should contain and express a certain type of dramaturgy [1], the first case should not
be possible, as the musical discourse must be indeed present at every musical

! Encyclopaedia Britannica Library - 2004: Arouse [7].

2 Activation: also called arousal in psychology, the stimulation of the cerebral cortex into a
state of general wakefulness or attention. Activation proceeds from various portions of the
brain, but mainly from the reticular formation, the nerve network in the midbrain that
monitors ingoing and outgoing sensory and motor impulses. Activation, however, is not the
same as direct cortical stimulation by specific sense receptors, such as being awakened by
noises. It involves, rather, a complex of impulses that are both internal and external to the
body. (Encyclopaedia Britannica Library - 2004: Activation) [7]. See also Chapter 9 of [8],
written by Simonton, which deals with the subject too.

3 Luciano Berio: Two Interviews with Rossana Dalmonte and Balint Andras Varga [11].
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manifestation, regardless of whether understood or not by the listener. The second
case however, does happen and rather often; this is mostly due to diversity of the
cultural backgrounds of different listener types. But, paraphrasing Berio, if people
can be ‘educated’ in this sense, this case may only be circumstantial and not final.

Having said that, in the case in which the musical discourse is both present and
understood as such by the listener, this implies the presence of a (musical)
communication process and therefore, by reacting to these stimuli, listeners can
connect an external musical discourse to their own interior and personal world (or
phaneron, to use Peirce’s terminology [9]) The next step will be their own
understanding of the event. Landy, based on Nattiez adds the following:

Nattiez has offered a useful definition of meaning for an individual apprehending that
object, as soon as the individual places the object in relation of his [or her] lived
experience-that is, in relation to a collection of other objects that belong to his or her
experience of the world. [4]

The music-creator is who exposes the music work openly from the inside to the
outside, as it is only outside the self that any work can be contemplated, regardless
of whether by other listeners or by the him/herself.* As music is a temporal act per
se (it happens during time), it can be inferred that a musical discourse cannot happen
without the following two dimensions: space (the outside world) and time. The
contemplation of a piece of music will happen inside each ‘music-recipient’ in a
physical space during a determined lapse of time. It is through this contemplation
that the dramaturgy of the musical discourse may become apparent. This implies that
the recipient has to be acquainted with the type of musical discourse listened to,
which brings us to the subjects of cultural background, expectation and mental
contours’. As the brain adapts itself in a very early stage in life (as early as inside the
womb), it stores information of the surrounding world in the long term memory,
what helps later in life to recall well known contours (e.g. in music: harmony,
melody, rhythm, etc.). This leads to expect due to previous knowledge similar
results in new, never experienced before but yet similar musical contours. [6] The
general cultural background of each individual will have similar results in how to
imagine the music heard by relating to already learned contours. If the models or
contours are known to the listener, the brain can predict and even be predisposed to
understand the dramaturgy of a given music by comparing it with previous
experiences. Cognitive science describes this as a mental schema: a framework
within which the brain places (stores) standard situations, extracting those elements
common to multiple experiences [6]. In music appreciation, familiarity (what creates
the network of neurons in the brain forming the according mental schema) brings the
listener’s attention onto music styles that the brain may or may not recognise. Even
if the listener will generally not be familiar to every piece of music listened, those
mental schemas may guide the brain to form new neural connections to recognise
new elements with which it is, partially or totally, not familiar. This expectation can
be broken with surprise if new elements appear (elements unknown to the listener’s
brain), and depending on how they are combined in a piece of music, the schemas
coming out of this appreciation may be stored in the brain and be recognised in
future auditions of the same piece or even others, which share similar characteristics.

Therefore, expectation plays a crucial role in whether recognising or not what is

4 The creator can also be the end-recipient, when it comes to the reproduction of own music.
3> Contour: ‘the general form or structure of something’. Term used also, to determine some
‘meaningful change in intonation in speech’. [10]
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being listened to. Hence, it suffices to be in such a position as to perceive the
musical discourse as a musical event and not as a mere conglomerate of sounds
without any connection between them. The listener is required only to possess some
basic information (mainly through expectation, regardless of its degree), which will
enable him to recognise that he is being confronted with a musical event and not
with something else. Here, the listener’s cultural background plays an eminent role.
The concept of what music is has changed through the passing of time; however not
only time is of vital importance here, but also where (referring to style and culture)
the music may have originated. Nonetheless, for listeners to understand a musical
discourse capable of arousing emotions and reflections, all of which will develop a
dramaturgy in their minds, it is a prerequisite for them to understand that what is
being perceived is music and nothing else. Thus, the logical consequence is that this
type of dramaturgy on the listeners’ side is a subjective occurrence inside their
minds originated in the act of listening. This, in spite of such a representation having
its origin in an external source, the music itself, which, through the musical
discourse carries an inner expressive intention given subjectively by its creator. This
subjective intention though, does not need to be apparent (and in many cases, it may
well not be) and is in many cases unknown to the listener. Berio’s following
statement sheds some light on the matter:

My listener will have the possibility to understand the music in different ways: in a way,

if he succeeds in deciphering the references; in another way, if he is not familiar with

them.b

Following this idea (similar to Weale’s concept of intention/reception [5]) and
applying my personal reflections both as composer and music-listener, is that I
proposed in [1] two main categories of music dramaturgy, which were summarised
in figure 1 above. Thus, these categories two can be defined as:

- Intrinsic or inner music dramaturgy: the inherent message that the musical
discourse carries within itself, which can be identified during the time of conception
of any type of music, in which the creator models his intentions into a musical
discourse.

- Extrinsic or emergent music dramaturgy: which is activated in the recipient’s
mind by the act of listening. This dramaturgy arises only through the contemplation
of music and may or may not be the same dramaturgy carried by the music being
listened to (the one intended by the creator). It becomes apparent only after human
reactions have been aroused in the listener’s mind. Figure 4 shows a complete chart

of the communication chain, as explained in this section.
|

Performance:

Intrinsic or Inner MUSICAL DISCOURSE Reception:
Music Dramaturgy = (Carrier of the Information = Inner —J» MUSIC-RECIPIENT
Music Dramaturgy) (Listener)

. |

Creation: v
MUSIC-CREATOR
(Composer) Reactions:

EMOTIONS and REFLECTION

|
h 4

Extrinsic or Emergent
Music Dramaturgy

Fig. 4. Music’s communication chain (complete chart).

¢ Tvanka Stoianova. Luciano Berio. Chemins en Musique, Paris 1985 [12].
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As already mentioned, music, opposed to some other types of art, depends for its
existence on an external and objective time: it is a ‘process’. The communication
chart (Fig. 4) represents the process in which music happens, and it requires time to
exist. Time however, may imply here a double connotation: there is an actual time,
in which the performance of music occurs’, and yet another, from the perspective of
the listener, which must be regarded as a relative value due to the subjectiveness of
the situation. This concept is linked to the philosophy of Henri-Louis Bergson.
According to Bergson’s (referring to time), duration is:

[TThe development of a thought that gradually changes as it takes shape.... Time is
invention or it is nothing at all. [13][14]
Moreover:
For ... the philosopher, time is a free-flowing medium that depends for its perception on
what is filling it. In Time and Free Will (1889), Bergson said that time could not be
evenly divided as by a clock, whose measurement dissolves time into tiny points in
space. [14]
Further, to this, the concept of event cannot be ignored. An event is also a process
and can refer to many fields, including those of philosophy. The following definition
states that:
Broadly understood, events are things that happen—things such as births and deaths,
thunder and lightening, explosions, weddings, hiccups and hand-waves, dances, smiles,
walks. Whether such things form a genuine metaphysical category is a question that has
attracted the sustained interest of philosophers, especially in the second half of the 20t
century. [15]

In the field of Philosophy, a definitive and unique definition of event does not yet
exist, and multiple theories co-exist. According to Kim [16], events are comprised of
three elements: object {x}, property {P} and time {t}; by combining them using the
operation {x,P,t} Kim states that events are defined. From the point of view of
perception, the structure of an event must be discerned by recipients, who will save
in their memory a certain amount of information about the contemplated event
(depending on factors such as attention, concentration, previous experiences, etc).
The structure of the event can be seen as its ‘dramaturgy’. If Kim’s theory is
transferred to music, then a musical event can be regarded as a continuum across
time of different combinations of sounds-and-breaks {x} gathered with a particular
purpose {P}, at a particular time {t} The purpose {P} has a meaning, which may
substantially change if, for example, an alteration in the order of events occurs.
Thus, and even though the constitutive elements may still the same, their order in
time is different, with an impact on the manner that music may be perceived and
understood, and therefore, different human reactions arouse.

The following subsections explain in detail the concepts of musical discourse and
of human reactions, including emotions.

2.2 Musical Discourse

7 1 refer hereby to the actual time outside our perception crafts. In the case of other types of
art, such as plastics, even though a painting may induce some kind of dramaturgy, the
painting in itself is ontologically timeless: the time of contemplation depends exclusively
on a subjective act from the side of the recipient (for example, how long the recipient will
be watching at it). In the case of music, there is an actual, objective time, determined by the
duration of each performance.
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Definitions of communication, such as ‘an act or instance of transmitting’ [10],
include the concept of transmission. To transmit is usually defined as ‘to send or
convey from one person or place to another’ [10]. In both cases, it is implicit that
there is ‘something’ being transmitted. Caesar explains [17] that, in A Theory of
Semiotics, Eco gives a special consideration to the relationship between the words
‘communication’ and ‘signification’. Here, even though both concepts are different
in their meaning, they are ‘not mutually excluded’ in the field of semiotics [17].
Further, Caesar makes clear, that the distinction on which Eco bases this concept
relies on the fact that:

...[S]emiotics is coexistence with signification which occurs only when the

communicative act envisages a potential human addressee acting as an interpreter of the

message (and not a receiver merely responding to a stimulus). [17]
This implies that a semiotic of signification can exist without a semiotic of
communication, but not inversely. Therefore, Caesar deduces that Eco includes a
human factor in the chain, given the fact that signification, according to Eco, cannot
occur if there is no human addressee interpreting the message. It is in this sense that
my views about music dramaturgy and its communication chain are presented here:
my main semiotic interests in music composition are its semantic® and essentially, its
pragmatic®values, rather than its syntax'?.

In music, the message interpreted by the addressee in the communicative act is
the musical discourse, the main object of transmission in a musical situation. To
discuss the musical discourse, it is of advantage to look at the definition of both
words first.

Discourse has several definitions, depending on the usage of the word. Related to
music, these two definitions may be the closest: ‘formal and orderly and usually
extended expression of thought on a subject’ or ‘a mode of organizing knowledge,
ideas, or experience that is rooted in language and its concrete contexts’ [10].

The expression of thought or the organisation of ideas rooted in language exists
through signs and symbols, which confer to the discourse its syntax and semantic
aspects. This means, that by referring to musical discourse, we enter the domain of
musical semiotics. Nattiez’s writings are arguably the main source to look for the
concepts of musical discourse and musical semiotics.

In contradistinction to human language, musical discourse does not strive to convey
clear, logically articulated messages. For this reason, we may well ask whether one can
speak of such things as “musical narrativity”. ... Musical discourse inscribes itself in
time. It is comprised of repetitions, recollections, preparations, expectations, and

8 Semantics is basically the relationship between signs and what they refer to. 'The word
"semantics" itself denotes a range of ideas, from the popular to the highly technical. It is often
used in ordinary language to denote a problem of understanding that comes down to word
selection or connotation.” (http://en.wikipedia.org/wiki/Semantics) [18]

° Pragmatics is the relationship between signs and their impact on those using them. 'Studies
how the transmission of meaning depends not only on the linguistic knowledge (for example,
grammar, lexicon, etc.) of the speaker and listener, but also on the context of the utterance,
knowledge about the status of those involved, the inferred intent of the speaker, and so on.'
(http://en.wikipedia.org/wiki/Pragmatics) [18]

10 Syntactics refers to the relationship between signs in formal structures. 'The study of the
principles and rules for constructing sentences in natural languages. In addition to referring to
the discipline, the term syntax is also used to refer directly to the rules and principles that
govern the sentence structure of any individual language...".
(http://en.wikipedia.org/wiki/Syntax) [18]
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resolutions, and in the realm of melodic syntax. [19]

Applied specifically to music, the discourse should therefore be the means of
carrying the musical expression. However, the expression intended by the music-
creator may or may not be understood by the listener as conceived, depending on
each particular case. However, without a musical discourse it is impossible to
establish the required communication act, as there would not be any element
(message) to be communicated. This does not imply though, that a music discourse
will make a particular composition more accessible or even will determine a unique
and universal view to that particular piece of music (thus, determining the pragmatic
level of its semiotic contents). On the contrary, this means that, on the one hand,
each listener will understand the same composition and/or performance differently
from others (with a wide degree of variation among them); on the other hand, as this
understanding is absolutely tied to the cultural environment and personal
background of each particular subject, it may not connect at all with the intention of
the composer/creator. Nattiez says:

If the listener, in listening to music, experiences the suasions of what I would like to call
the narrative impulse, this is because he or she hears (on the level of strictly musical
discourse) recollections, expectations, and resolutions, but does not know what is
expected, what resolved. The listener will be seized by a desire to complete, in words,
what music does not say, because music is incapable of saying it. Such things are not in
music’s semiological nature. [19]

Yet, the clearer the musical discourse of a piece of music (in its syntactic and
semantic dimension), the better the reception that may be obtained from the original
intention assigned to that music. In any case, communication (regardless of the level
and degree of its understanding) has been established when a musical discourse is
present, provided it can be understood as such. The understanding of it presupposes
therefore the existence of Eco’s ‘addressee’ [17].

Music has been contemplated in the past from rather diverse angles. Kivy [20]
explains how to interpret Aristotle’s definition of the Greek word pvpunorg
(mimesis, meaning imitation), when applied specifically to music. He starts by
quoting Thomas Twinning’s interpretation of this word in his 1789 translation of
Aristotle’s Treatise on Poetry. Kivy agrees with Twinning, that the word imitation
should be understood as what was actually meant in its own time, closer to
‘expression’ rather than the modern concept of ‘imitation’. As Kivy quotes from the
Shorter Oxford English Dictionary, the definition for the word imitation is to ‘copy’
or to ‘reproduce’ and, moreover, it is a ‘counterfeit’ or an ‘artificial likeness’.
Associated with this, Kivy also explains Aristotle’s claim in his Politics VII (1340a):
here, what music does imitate is in fact ‘emotions and states of human character’.
[20]

2.3 Human Reactions

Listeners react to the musical discourse in distinctive ways; these reactions include
emotions. Unfortunately, the word ‘emotion’, which is generally associated with
feelings, thoughts and behaviours, is quite ambiguous in meaning, and depending on
which line of research is followed, a different understanding of the very concept of
emotion will arise. Some lines of research have made synonyms of the words
emotion and feeling. Furthermore, there seems to be neither an established
procedure nor an agreement in the research community so far to define the number
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and nature of a standard set of different categories of emotions [21]. For the purpose
of this article however, 1 shall treat hereby emotions and thoughts as separate
entities.

In spite of this ambiguity, listeners’ reactions, specifically emotions, need further
analysis because, even if emotions may be present in the majority of cases
throughout the entire listening process (and, most likely, also beyond), they can be
either the first reaction to the act of listening (previous to any rationalisation) or the
reaction to some reflection about what has been listened to. This distinction can
affect the entire communication process, and therefore, the perception of the musical
discourse. Music is listened to at the very first stage through the senses (mainly
through the sense of hearing), and this first reception arouses almost immediately in
the listener some type of reaction, in many cases, an emotional reaction, which can
be extremely variable depending on each particular situation.

Some musical materials such as chords and melodies in western tonal music tend
to produce some common emotional reactions in (at least) western audiences: just as
an example, minor chords or even tonalities seem generally to be associated with a
sad or melancholic mood, arousing a similar type of reaction. A piece of music,
however, is a complex combination of different musical materials, such as chords,
harmonies, melodies and even layers of sound. From the perspective of music
semiotics, these elements isolated constitute the syntactic ‘signs’ of the musical
narrative. When gathered together, the tension created by those elements is what
may produce the understanding of and reflection on what has been listened to; after
that, an emotional reaction may follow, which may not be the same as it could have
been for particular elements of that piece (such as isolated chords, melodies, etc.),
but an emotional reaction that arises from listening to the entire work. In other cases
however, that tension may resolve directly in emotions, which then may influence
the ulterior understanding of a work of music and are therefore prior to any
reflection or thought. Hence, two situations can be distinguished, which I regard
hereby as first and second cases of arousal in music perception:

- reflection/thoughts =» emotions (first case) and

- emotions =» reflection/thoughts (second case)

Both cases relate to the empathetic listening behaviour by Delalande [22][1].

Sometimes, however, the arousal of emotions in the listener’s mind may not
happen after reflection. In this particular situation, the dramaturgy that emerges is
solely the consequence of reflection. The opposite however (no reflections after the
emotions), is indeed rare, as our brain has evolved in such a way that it is
programmed to imagine stories, thus reflecting on what it experiences. Muller [23]
refers to the research in the 1970s and 1980s by Roger G. Schank, who examined the
issue of how human beings think and further, how those thinking processes
influence our behaviour; through this research, Schank attempted to develop
artificial intelligence programmes for computers. This research concluded with the
idea, that the human brain is programmed to think in terms of stories. Quoting from
Muller’s article:

A human brain may receive thousands of pieces of information daily. Most of it we
can’t retrieve, even minutes later, while other information can stay with us for years, and
we can easily recall it. Why? Because the information that we tend to remember is
presented in the context of a story about the information, person, or event. [23].
In the cases in which emotions happen after reflection, they can however vary with
the audition at different moments or situations (for example in a different mood) of
the same piece of music (thus, with the same musical discourse). In these cases,
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emotions can even induce the listener to a different understanding. Therefore,
emotions can either be the consequence of the reflection on what was heard or the
trigger to an interpretation. It mainly depends on the personal background and state
of mind of each listener for one case or the other to happen. Furthermore, in the
second case, thoughts can trigger further emotions, which may vary in some degree
the former understanding, and changing it accordingly. The chain can go
indefinitely. Thus, emotions can be two-fold, as they may predispose listeners to
understand the music in a particular way by defining or at least influencing how, the
musical intention can be perceived or they may be the result of that understanding.
The understanding that emerges in the recipient’s mind can change from time to
time depending on moods, cultural background, experiences of life, expectation, and
so on, producing different reactions in the same person at different times, even in
cases in which, the same piece of music (even in the same interpretation, or same
recording) is being listened to.

Research in the area of emotional reactions to music situations shows that in the
last hundred years it has concentrated mainly (in some cases even exclusively) on
the parameter melody. This can be observed in several cases, such as the writings by
Budd [24] or Cohen (in [8], Chapter 11), even though the latter includes film music
from a perspective that does not treat solely the melodic aspect. However,
developments in music since the Italian Futurism in 1909, where other musical
parameters rather than melody constitute the essence of some music, seem to be
rather ignored or left aside. I refer here to cases such as electronic, acousmatic and
interactive music: all these types not only work mainly based on concrete sounds
and noise, but quite often their most likely constitutive musical parameters are
timbre or sound spatialisation. Moreover, my disagreement with these analysis on
music and emotions (such as Simonton’s in [8], Chapter 9) relies on the fact, that
they do not only focus on the essence of the emotional reaction over melodic aspects
of the music alone (ignoring other music parameters, such as harmonic tensions or
timbre), but also, that this view implies to put the weight of the reaction on the
music rather than on the listener. According to this view, syntactic, semantic and
pragmatic values of music semiotics seem to be merged in the message and the
messenger, with no regard to the fact, that its significant (pragmatic) value can only
be analysed considering the addressee of this message, the listener.

In some writings on music-analysis, some authors link their personal view of a
work with the biography of its composer. Charles Fisk’s connected the famous left
hand thrill in bar seven of Schubert’s B flat piano sonata with the composer’s
supposed homosexuality [8]. This is actually a classic example of dramaturgy of
music happening within the listener’s mind universe (its own phaneron, to use
Peirce’s jargon [9]). In this case, the listener is Fisk himself. He does not speak
about his emotions hereby though, and obviously, his vision of the work can cause
major differences in the appreciation of Schubert’s sonata in other listeners. He
conceives his analysis as a ‘story’ ‘a naively poetic description of what happens in
the music’ [25]. Fisk concludes his article with the sentence “What Schubert’s last
Sonata might hold for me’, adding the two last words to the title of the article.

To summarise this section: human reactions are always related to the pragmatic
aspect of musical semiotics, that aspect directly linked with the understanding of the
link between the musical signs (musical syntactics) and their combinations (musical
semantics) in a musical discourse. This is closely related to Peirce’s seminal work in
the field of semiotics: according to Peirce, signs cannot have a definite meaning,
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because meaning ought to be qualified continuously [7] ''. A musical discourse can
be therefore understood only pragmatically, that is, after being experienced, and that
experience conducts to human reactions of different type, of which emotions is one
of the most common, but not the only one.

2.4 Mind Games: Categorisation and Memory Retrieval

Back in 1953, in his work Philosophische Untersuchungen, Wittgenstein discussed
the matter of categorisation [18]'2. As Levitin explains [6], Wittgenstein took the
category ‘game’ and demonstrated that there is no unequivocal way of describing
the word, and that this category could be subscribed to many different items, which
all could be recognised as such, but which may not have a direct connection among
themselves. This is against the way Aristotle analysed categories. In the Aristotelian
thought, “categories were assumed to be a matter of logic, and objects were either
inside or outside a category” [6]. This means, that they have to be clearly defined,
and no fuzzy boundaries among them should exist. Game was Wittgenstein’s chosen
category to challenge classical categorisation, but that can indeed happen with any
other. In other words, what for Aristotle could only be black or white (something
belongs or not to a given category), it lost after Wittgenstein its absolute meaning, to
turn into a more comprehensive way of dealing with categorising, with the addition
of all nuances in-between that the Aristotelian analysis was missing. Wittgenstein
proposed that not definition but family resemblance is what characterises category
membership [6].

Wittgenstein’s approach to categorisation was further developed in the 70s by
Rosch [26], with the Prototype Theory, which allows categories to have fuzzy
boundaries: objects could be part of many different categories at once, depending on
how the object is understood or considered. This theory suggests “the constructivist
view, that an abstract generalization of the stimuli we encounter becomes stored”
[6]. In other words, the abstraction of experience in the form of a prototype or
tendency is what it is stored in the brain. This abstraction is contrary to record-
keeping memory theories, which say that every single action in our lives is stored in
some part of the brain.

Smith et al [27] proposed another view with the Exemplar Theory, based in the
storage of specific instances (the ‘exemplars’ of the name). This theory puts the
accent on the residual trace in memory, a record-keeping based theory. The main
feature of this theory is that it brings context to the discussion: “Under it, details and
context are retained in the conceptual memory system” [6]. This is the reason why
this theory proposes that new information will be normally evaluated by comparison
to existing categories and how closely the new information resembles already known
members of the existing category.

From 1997 onwards, research by Nadel [28] (among others), proposed a
consolidation model, best known as Multiple-Trace Memory model (MTT), in
which, both models seem to converge. MMT explains how the hippocampus is
involved in both the storage and retrieval of episodic memory (vital therefore for
understanding any kind of dramaturgy), while the neocortex is in charge of semantic

11 Encyclopaedia Britannica Library - 2004: Peirce [7].
12 Categorization is the process in which ideas and objects are recognized, differentiated and
understood’. http://en.wikipedia.org/wiki/Categorization [18].
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memory (what has also an impact on how to understand the dramaturgy of events).
MTT actually takes elements from both the Prototype and the Exemplar models.
Levitin explains, that
[I]n this kind of models, each experience we have is preserved with high fidelity in our
long-term memory system. Memory distortions and confabulations occur when, in the
process of retrieving a memory, we either run into interference from other traces that are
competing for our attention” .... “or some of the details of the original memory trace
have degraded due to normally occurring neurobiological processes”. [6]

MTT models indicate that potentially every single memory can be encoded in our
memories. And this happens in many parts of the brain, not exclusively in one or
two, what would explain why people suffering from amnesia, can remember some
aspects of their lives and complete forget about others.

In any case, one of the most interesting issues about MTT models is that they do
preserve context, that is, not only the exact information of retrieval, but also the
context in which it was acquired. This should be vital to the issue of dramaturgy of
music and the way a listener categorises what is being listened, to elaborate a story
of its own. As seen in section 2.2, the brain is specially fitted to create ‘stories’. The
left part is mainly the one in charge of that function, and probably the region called
orbito-frontal cortex [6]. Therefore, from the point of view of neuroscience, we
might say that dramaturgy of music is the story that our brain imagines, a story
triggered by the act of listening to music. Just like we instantaneously normally
‘invent’ a story of someone we just met by reading the facial expressions, so do we
too, when we listen to music. And if the human brain does indeed deal with
categories at all times —and that is the way we come to understand the world every
instant, by ordering our thoughts in different ‘files’— this process of categorisation
cannot be the exception while listening to music.

The subject of categorisation with regard to music dramaturgy can be linked with
the Intention/reception project (IR) by Weale. This project “situates its primary
point of departure in aspects of Landy’s research, in particular the issues of access
and appreciation in E/A art music. It includes the development, enhancement and
expansion of two of his concepts: the ‘something to hold on to factor’, and
‘dramaturgy’ in E/A music” [5]. Even though this definition refers only to
electroacoustic music, it can be actually used for any other type of music. I am
mostly interested hereby in the concept of ‘something to hold on to factor’ and its
link with the dramaturgy of music, as it appears to be directly related to
categorisation. “Simply put, the ‘something to hold on to factors’ (SHFs) are those
factors that a listener uses to make sense of and appreciate a particular work” [5].
Landy made a list of these with different categories [3][5]. In 2005, Weale
established a new way of categorising the SHFs [5], enhancing the list proposed by
Landy in 1994.

Weale [5] puts the ‘dramaturgic information as a SHF’. I would hereby argue that
this view seems to imply that the only way to understand the dramaturgy of this
music is through the ‘dramaturgic information’ given by the author of the piece(s) in
this research. Whilst in my own categorisation [1], I do not deny that most pieces do
have a dramaturgic intention, and that it is vital for a piece of music to be understood
as close to its author’s conception as possible, I also explain [1], that the emergent
dramaturgy in the listener’s mind does not need be the one intended at all (and in
many cases, it may not coincide at all). However, I totally agree with Landy and
Weale in considering the title of the piece a SHF. Their research shows results that
seem to prove that the title is a big help in orientating listeners in what they are
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about to listen to. However, this does not mean that the title would reveal the entire
intention of the piece. And further, it does not mean that this help would always be
an aid to find a close understanding of the intended content; it is just a tool of
orientation. My own categorisation of emergent music dramaturgy (Fig. 4), situates
emotions and thoughts before the emergent dramaturgy in the communication chain,
implying that the cultural and emotional baggage of the listener will interact with the
input and produce a dramaturgy of its own. MMT, as explained above, seem to
support this view.

This said, SHFs can only work, if the brain —while listening to music- react by
categorising what is being listened to with previous experiences (regardless of their
context). This is directly related to the way information is stored in the brain, as
categorisation cannot happen without a known and recognisable background.
Memory theories are also linked to categorisation, as we saw above. Levitin explains
with quite clearly selected music examples the two main ways of analysis: the
constructivist theory (close to Prototype Theory mentioned before), which considers
memory as an abstract generalisation of past experiences stored in the brain and not
an accurate storage of all of them as the record-keeping theory accounts for
(Exemplar Theory) [6]. One of Levitin’s examples in favour of the constructivist
view, is that people are able to recognize a piece of music in different versions, even
transposed to other keys, instrumentation, tempo and variations of its rhythmic (or
even form) structure. On the other hand, contextual exemplars do exist while
listening and ordering the listened experiences, and are also important. In this way, it
is clear that MTT are more flexible models, as they try to incorporate both views, the
constructivist (abstract) and the record-keeping.

To explain how the role of categorisation can be linked to understanding music’s
dramaturgy and human emotions, yet a further, deeper view into the brain’s structure
is needed. It would appear, that perception and imagination share the same area of
the brain. Since the mid 90s and using the help of EEG'?, Janata, doctor in the fields
of cognitive neuroscience and neuroethology, studied the relation between
imagination and how the brain perceives sound. Janata explains [29]:

‘Memories of previous sensory input and accumulated knowledge of how the sensory
environment behaves are capable of shaping our perceptions of incoming sensory
information. Similarly, moment-to-moment sensory input is capable of reshaping stored
representations, especially when the recent information doesn’t match our expectations’.

Levitin describes an experiment [6], in which he also took part. Janata placed
sensors measuring electrical activity from the brain across the surface of the scalp of
different test subjects.

“... Petr and I were surprised to see that it was nearly impossible to tell from the data
whether people were listening to or imagining music. The pattern of brain activity was
virtually indistinguishable. This suggested that people us the same brain regions for
remembering as they do for perceiving”. [6]

SHFs may be therefore closely linked to memory issues and could be related to
the brain reaction discovered by Janata and Levitin, because the fabrication of
stories, as defined above, needs imagination, and listening would appear to share the
same part of the brain as imagination. A further categorisation by the brain —whilst
listening to music— of a particular SHF by the means of the contextualisation
proposed by MTT should follow, linking different categories stored in the memory
(and their contexts), to form a particular new story. This process should describe the

13 Electroencephalography
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way we imagine music while listening to it (or even after) and therefore, the process
in which music dramaturgy emerges in perception and/or in memory and produces,
as a consequence, diverse human reactions. It must be clarified though, that in the
I/R project, this should apply only to ‘reception’, not to ‘intention’.

4 Conclusion

The semiotics involved in the musical discourse, mostly its pragmatic values, leave
an imprint in the human brain and produce what it is called human reactions. These
are mainly constituted by thoughts and emotions.

The paper gave a thorough view of the effects those pragmatic values can have on
the human brain, by including and explaining the concepts of mental schemas [6],
the impact of expectation on them, the different theories about how the human brain
categorises (and retains) what it perceives (and considered the MMT model [28] as
the most adequate so far to explain those phenomena) and the innate ability of the
human brain to imagine stories reflecting its experiences. Emotions and thoughts are
therefore included in all of those reactions of the brain to the surrounding world.

With regard to music listening in the field of music dramaturgy via a musical
discourse, emotions have been categorised in two ways: either they may predispose
the music-recipient to understand the music in a particular way (awake thoughts
about what has been experienced emotionally) or they can be aroused by a previous
understanding (reflection/thought) of that music. That means, that if the listener is
not immediately emotionally involved during the reception of a musical discourse,
then thoughts invariably will emerge, as we saw in how the human brain is always
prepared to; therefore they are the reaction of the understanding of that particular
music. In any of those cases they define (or at least influence) how, during the act of
listening, the perception of the music’s intrinsic dramaturgy.

Although the two cases exposed in section 2.3 are explained as being completely
different, this is so only for the reason of categorisation and clarity. Thus, the most
likely situation is that of a rather mixed situation (therefore closer to Wittgenstein
rather than to Aristotle), in which the first option may be closer to reality than the
second or inversely, the second closer to the first, but never completely and
absolutely isolated. As described by Levitin [6] after his experiment with Janata, it is
nearly impossible to tell the difference in the data if people were listening to or
simply imagining music. The reason given, is that apparently imagination and
listening share the same part of the brain. Despite the fact, that emotions are
simultaneously aroused by other reasons, the main interest of this article relies on
the fact that those emotions are linked to that musical imagination.
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Abstract. In this paper we introduce ENP-regex, a prototype of a
regular expression matcher developed for Expressive Notation Package
(ENP). ENP-regex allows us to use the regular expression syntax to
match against several score attributes, such as pitch and rhythm. Instead
of writing the regular expression matcher from scratch we implement a
scheme where a thin conversion layer is inserted between an existing
Lisp-based regular expression library and ENP. The information sent
from ENP to the regex matcher is transformed into a textual format.
Similarly, the matches are converted into corresponding score objects.
The benefit of the present implementation is that potentially the whole
syntax of the regex matcher in question is at our disposal. We have im-
plemented a prototype of the regular expression matcher. In this paper
we present the current state of the system through examples.

Keywords: Regular expressions, music notation, scripting, music anal-
ysis and visualization

1 Introduction

In this paper we present an extension to Expressive Notation Package (ENP,
[8]) called ENP-regex. ENP-regex allows us to use regular expressions to match
against musical data, such as pitch and rhythm. Traditionally, regular expres-
sions are used for matching characters, words, or patterns of characters in strings.
Similarly, with ENP-regex, we are able to match notes, groups of notes and dif-
ferent patterns in an ENP score according to a given property.

Regular expressions and other string search algorithms have been widely
used in the music domain. Dovey [4] reports a regular expression like search
framework that uses piano-roll notations as a starting point. One of the most
notable music analysis applications, Humdrum [6], uses the regular expressions
extensively. The problems with representing musical attributes with text are
widely discussed in [3].

Our main motivation is to study the potential of regular expressions in the
context of ENP. We use symbolic music notation, not text, as a starting point

* The work of Mika Kuuskankare has been supported by the Academy of Finland
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the research.
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and use musical conventions, rather than textual, when describing the regular
expression patterns. This should make the system more approachable for musi-
cians. The mapping between the musical attributes and regular expressions is
done on the fly without any further actions required from the user.

A new scripting language is envisioned where any Lisp function could be
applied to the matching objects. Potentially, we could insert expressions, add or
delete notes, transpose them, etc. For example, an intelligent find (or find and
replace) extension could be implemented with the help of regular expressions.

One of the benefits of using regular expressions is that they are widely known
and used. The plan is to eventually integrate ENP-regex more closely into the
ENP tool-chain.

The rest of the paper is organized as follows. First, we discuss some of the im-
plementation issues. Next, we give some examples of real-world problems where
ENP-regex would prove to be useful. The paper ends with some discussion and
a list of plans for further development.

2 ENP-regex

ENP-regex is based on a library called cl-ppcre [1] which is a regular expression
library for Common Lisp. The ENP-regex matcher can be run in different do-
mains, currently pitch, rhythm, interval, and harmony (pitch-class set), to match
against several score properties. The user inputs the regular expression using a
slightly modified syntax (this will be discussed below in more detail). The target
score is encoded so that it can be processed by the cl-ppcre matcher. The results
returned by cl-ppcre (indices) are translated back to score objects, and, finally,
the action indicated by the user is performed. At this stage we mark the matches
in several different ways, such as inserting expressions, or simply by highlighting
the matches.

One of the key concepts behind the ENP-regex implementation is the idea of
a translator. A translator maps the desired score objects into a representation
that, in turn, can be used as an input to a conventional regex parser, which, in
turn, returns indices which are mapped back to score objects. Figure 1 illustrates
this process.

The regular expression syntax used in the case of ENP-regex is compatible
with that of Perl but slightly extended. Although it would be convenient in
our case, normally, we do not write a pattern as M to match all numbers
between 60 and 66. Therefore, for convenience, a small language extension is
provided which allows us to use a more musically oriented syntax when defining
the regular expression patterns.

For pitch, both absolute pitch and intervals, we use the MIDI note repre-
sentation, i.e., middle-C is represented by the number 60, and for rhythm the

fractional notation, e.g., or|1/20|. Note that our MIDI note representation

is extended as it allows us to represent micro-intervals by adding a fractional
part, such as 0.5, for example, to denote a quarter tone. For harmony, we use
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Fig. 1. The translation of score properties into a representation that can be parsed by
a regular expression engine and back to score objects.

the pitch-class set notation following the conventions introduced by Allen Forte
[2], where the major triad, for example, is notated with the symbol “3-11b” and
the minor one with “3-11a”.

To distinguish the ENP-regex notation from that of regular expressions we
use a hash-mark (#) as a prefix. A pre-processor is implemented which translates
our customized regex syntax into the Perl compatible syntax. Thus, it is possible

to indicate, for example, a pitch range by writing it as | [#60-#72] |

3 Examples

In this section we illustrate the potential of ENP-regex through examples.

Figure 2 shows our editor developed for testing the ENP-regex interface.
The first row gives the selectors for the property domains, i.e, pitch, rhythm,
intervals, and harmony. Using the next group of controllers we can select the
desired side-effect. “default” indicates that we want to highlight the matches
and “custom” together with the following text input field allow us to specify the
class name and the attributes of an ENP-expression [7], which will be applied to
the matches found in the score. The third row allows us to choose the matching
direction (this will be discussed in Section ?7?). Finally, in the bottom row the
ENP-regex pattern is given.

3.1 Phrases

We begin with a simple example that aims to illustrate the relationship between
regular expressions and ENP. The internal encoding of pitch (and other informa-
tion) is arranged so that the alphanumeric characters are reserved for attributes

130



Mika Kuuskankare

that are related to events, and the 'non-word characters’ are reserved for rests.
Currently, we do not distinguish between rests of different lengths, but treat
them as non-sounding events. Therefore, the ’alphanumeric characters’ symbol,
, in ENP-regex is used to indicate a note, and the , in turn, indicates

a rest. We provide this translation for convenience only and it does not attempt
to draw any further conclusions about the relationship of music and text.
In our first example (see Figure 2) we use ENP-regex to insert phrasing slurs

in the score, using the following regular expression: . This is a straight-
forward way of segmenting music according to the rests. We also use a custom
phrasing slur with some additional attributes (see, “SLUR :KIND :DASHED” in
Figure 2) instead of simply revealing the matches. The phrasing slur is displayed
in the score as a curve using a stippled pattern.

AOO ENP-REGEX

Regex
@PTcH ORTM (O INTERVAL () HARMONIC-PCS

Expression

(O DEFAULT @) CUSTOM s UR :KIND :DASHED

enp-regex

W+

v

Fig. 2. The ENP-regex tool with the regex expression at the bottom.

vl s . e S S JS—— T S S~ W —— S~ B S——
e e ———— 1w —" 7 B S ———" S— 1 S— —

(7
NS}

Fig. 3. Inserting phrase marking (the two dashed slurs above the score) with the help
of ENP-regex using the pattern \w+. (Yesterday by The Beatles)

3.2 Pitch

In Figure 4, we give an example of ENP-regex in the pitch domain, where we
aim to reveal the extreme pitches in a passage written for the flute. The flute
spans form B3 to C7 and above. Here, the range considered as extreme is chosen
somewhat arbitrarily. The ENP-regex pattern to find and mark the ranges is as
follows: [#59-#60490-#96].
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Fig. 4. Indicating extremely low and high pitches (the encircled notes) in the piece of
music for the flute using a pattern with low and high ranges: [#59-#60490-#96].
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Fig. 5. Articulation slurs inserted according to the interval between two consecutive
notes. (J.S.Bach)

T

3.3 Intervals

As an example of ENP-regex in the interval domain we attempt to add appropri-
ate articulation slurs to a small excerpt of music by J.S. Bach (see Figure 5). We
note that in the original there is a slur between two notes forming a descending
minor second interval. We define the interval pattern as and define the

slur expression as in Figure 3 but without the extra attributes (:kind :dashed).
Figure 5 shows the slurs inserted with the help of ENP-regex.

3.4 Harmony

The example shown in Figure 7 is a small excerpt, prepared by the Finnish
composer Kimmo Kuitunen, called “6-Z47B”-blues. Here, we use ENP-regex
in the harmony domain to locate certain sonorities, namely the “mother” set-
class 6-Z47B and the set-class named 5-35 (a chord consisting of only perfect
fifth intervals is possible to construct using the set-class 5-35). The ENP-regex
is given in Figure 6. This example demonstrates the ENP-regex can also be
executed in non-metrical context.

3.5 Repetitions Using Back-references

Our final example in this section deals with repetitions. Here, we use a regular ex-
pression construct, called a back-reference, which is defined as follows: m
The matching is done in the harmony domain. In Figure 8 the matching har-
monies are indicated by enclosing them inside boxes. Note, that harmony here
is a harmony class, thus it does not have anything to do with a particular set-
ting or voicing. This simple pattern finds repeating series harmonies. The first
of the matches is an alternating pattern between two different harmonies, and
the latter two matches represent static repeating harmonies.
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Regex
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Expression
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#6-z47bl#5-35

A

Fig. 6. ENP-regex in the harmony domain aimed at finding and marking specific har-
monies in the target score.
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Fig. 7. The harmonies 6-Z47B and 5-35 marked in the score by Kuitunen.
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Fig. 8. Harmonic repetitions revealed with the help of ENP-regex using back-
references. (Prokofiev: Peter and the Wolf)

133



Title Suppressed Due to Excessive Length

4 Future Development

There are several improvements in the planning. First, we should develop a user
API for creating custom mappings to any score property, e.g., ENP-expressions.

Second, we should support iterating over higher-level objects than notes.
The user could be presented with a choice between notes, chords, and measures,
for example. This way we would be free of adding any complexity in the regex
pattern, in terms of dealing with the beat boundaries, for example.

Third, we should augment the regular expression specification of ENP-regex.
Several additions are planned, such as specifying the matching direction, e.g.,
right-to-left or bi-directional matching, and incorporating loop-like constructs,
such as the beginning index of the matching, step, etc. The latter would allow
us to use regex matching to insert, for example, interval n-grams into the target
score. n-grams have been have been widely used in text retrieval and are also
proposed for MIR, applications, for example, in [5].

Finally, the regex matchers could potentially also be combined. It should be
investigated if there is a feasible way to logically combine the results. A simple
intersection might not be enough, as, for example, a regex |[60-67]{4} | would

not necessarily be true, when an intersection is taken with the results returned
by the regex | 1/44 | executed in the rhythm domain, etc. However, it would

be interesting to provide users with the choice as it would allow us to make
multi-parameter regular expression matching.

Finally, our regex implementation could also potentially be coupled with the
existing pattern matching language of PWGLConstraints[9], thus allowing us
to use both syntaxes interchangeably. Some patterns would be more easily ex-
pressed using the regex syntax, rather than that of our backtracking constraints
system.

5 Conclusions

This paper presents ENP-regex, the prototype implementation of a regular ex-
pressions matcher for the Expressive Notation Package. Currently, ENP-regex is
able to use most of the regular expression syntax and can match against different
types of score information, such as pitch, rhythm, intervals, and harmony.

The most interesting applications of the present work can be found in the
domains of music information retrieval, scripting, and computer assisted com-
position and analysis.
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Abstract. 170 participants were played short excerpts of orchestral music and
instructed to move a mouse cursor as quickly as possible to one of six faces that
best corresponded to the emotion they thought the music expressed. Excerpts
were analysed and the musical cues coded. Relationships between the number
of cues and participants’ response times were investigated and reported. No
relationship between the number of cues available to the listener and the speed
of response was found. Findings suggest that the initial response to ecologically
plausible musical excerpts is quite complex, and requires further investigation
to provide emotion-retrieval models of music with psychologically driven data.

Keywords: Music, emotion, modelling, initial response, cue utilisation,
response speed

1 Introduction

Modelling emotional responses to music has developed considerably in the last ten
years [1]. We now have models that can predict a typical emotional response to a
piece of music expected from an individual in a Western culture reasonably
accurately, simply by processing certain features extracted from the same piece [2].
Furthermore, use of continuous response methods has allowed understanding and
modelling of moment-to-moment changes in musical features and subsequent
emotional response [3-6]. Of the many dilemmas these approaches have left,
however, continuous responses have highlighted a curious problem regarding the
initial response to a piece of music. Recent research suggests that it takes some eight
seconds after the start of a piece of music before a listeners emotional response
‘settles’ or becomes reliable [7, 8].

Since emotional responses appear not to be immediate according to continuous
response studies, but can nevertheless be performed quite quickly according to post-
performance response data, the question of how quickly one can decide on emotion
expressed by music becomes an inviting and relevant question.

Peretz et al. [9] reported that participants were able to differentiate correctly
between ‘happy’ and ‘sad’ emotions based on mode and tempo as quickly as 0.25 of a
second. In a similar study, Bigand et al. [10] compared participants’ grouping of one-
second excerpts into groups of similar emotional character with the grouping of
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twenty-five-second excerpts. Strong correlations between the groupings for each
excerpt duration confirmed the Peretz et al. [9] findings that only a very small amount
of time is needed to induce strong emotional responses. Although these studies
demonstrate the extreme rapidity with which emotional responses can be made, the
area of reaction time, or ‘response’ time is one that has remained relatively unstudied
and calls for further insight. Bachorik et al. [7] looked at the response time (or what
the authors refer to as ‘integration time’) for participants whom were expressly
instructed to ‘move [a] joystick as soon as they began feeling an emotional response
to the music’ whilst their movements were plotted on a two-dimensional grid of
arousal and valence. The ‘integration time’ was measured as the time taken for
participants to make a movement of the mouse beyond a pre-determined ‘jitter’ of 15
pixels. However the study only reports typical integration times (between 8.31s and
11s) and again fails to scrutinise individual results that are faster than this, or indeed,
faster than the one-second reported in Bigand et al. [10].

On further scrutiny of the musical content (or ‘musical and psychoacoustical
structures’) of their excerpts, Bigand et al. [10] suggested that the responses were
governed by highly cultural compositional and performance-related features or cues.
They discovered that many of the one-second excerpts (half of all cases) contained
only a single chord or interval, and some only a single pitch and concluded after a
‘cautious analysis’ that performance cues within the music are enough to induce
emotions in Western listeners at this very quick speed. Similar studies that yield
comparable response times in making non-emotional evaluations of music would tend
to support this [11]. By examining both performance-rated and non-performance-
related cues from the position of the fastest possible emotional responses it may be
possible to build a clear picture of a) which cues are utilised b) the number necessary
in order to make a decision and ¢) how cues are utilised (i.e. based on their
‘usefulness’ in any hierarchical structures). By looking at fastest plausible response
times it is possible to say with some degree of confidence ‘this much music was
required before the participant was able to make an emotional response’. By then
carefully analysing the musical content and coding the cues with it, it may be possible
to start to see more clearly what type or number of cue listeners most rely on.

Substantial work has been undertaken to identify the factors within musical
structures that allow us to perceive emotional expression. For example, fast tempo has
been associated with the expression of emotions such as ‘exciting’, ‘happy’ and ‘glad’
whereas slow tempo has been associated emotions such as ‘serenity’ and ‘sadness’
(for a summary of musical features from reviewed studies see: [12]). Juslin asserts
that the number of cues impinges directly on the music’s effectiveness to
communicate emotion [13], however little research has attempted to reconcile these
findings with the initial moments of an emotional response in the listener. This paper
will, therefore, ask a number of questions: How quickly is it feasibly possible to
recognise emotions in music? Does the number of musical features or ‘cues’ have any
effect on the response time? How many cues are needed before a listener can make an
informed decision? The overarching hypothesis is that there exists a cue accumulation
effect whereby ambiguous cues (i.e. cues that provide information that conflicts with
that from the majority of others) delay the evaluation of cues already made available
by requiring further cues in order to confirm an assessment resulting in longer
response times.
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2 Method

2.1 Participants

A total of 170 participants took part in the experiment, 101 female and 69 male. All
were tertiary level students either undergraduate or postgraduate between the ages of
17 to 50 (median age = 21) with a mean average of 6.99 years musical experience
(range = 0 — 30 years).

2.2 Materials

The experiment used a pool of 19 short excerpts (duration = 7 s — 27 s) taken from the
soundtracks of Disney Pixar animated films. It was deemed that music from this genre
had high potential in best conveying the target emotions due to their programmatic
and narrative nature. A pilot study was conducted to ascertain which emotion each
excerpt was deemed to express the best. In this pilot study, participants were asked to
select from a list of emotions (excited, happy, calm, sad, scared or angry) the one they
thought was most applicable to each excerpt used in the current trial. The results were
consolidated to arrive at a putative emotion for each excerpt (this became the ‘target
emotion’. See: [14]). All excerpts were purely instrumental. Each target emotion had
3 excerpts from which the software (written by author SF using Max 5) used in the
trial could select, with the exception of the excited target emotion, which contained an
extra excerpt in order to avoid better the possibility of participants guessing the last
target emotion to be played. The software would randomly select one excerpt at a
time from each of the target emotions whilst displaying a question at the top of the
screen asking participants to identify the emotion they think the music best expresses
(as opposed to the emotion the music makes them feel).

2.3 Procedure

Participants were presented with an on-screen display of six ‘target faces’ arranged in
a circle. Each face was a simple representation of a target emotion (either excited,
happy, calm, sad, scared or angry) and ordered according to valence and arousal
(level of valence arranged horizontally and arousal vertically so that target emotions
of similar valence and arousal are adjacent). To further aid quick reference and elicit
the fastest possible response, the faces were also coloured (red for angry; yellow for
excited, happy and calm; blue for sad, and darker blue for scared). Participants were
explicitly instructed to move the mouse cursor to their decision as quickly as possible.
Through headphones, they were then played a series of seven excerpts randomly
drawn by the software from the pool. The participant initiated playback of each
excerpt by clicking a green quaver symbol in the centre of the circle. The computer
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then logged each participant’s time for their ‘out of box’ time: the time it took them to
move the cursor out of a hidden centre box, and their ‘first face’ time: the time it took
them to move the cursor to the face they first selected. The software also logged all
faces ‘visited’ and in which order together with all other cursor movements. It is to
these tasks and responses that the present study refers.

3 Results and Discussion

Data were separated into two groups: data from those participants whose first face
was that of the target emotion, plus or minus one (one face either side of the target
face); and data from those whose first face was not (but instead was in another
location on the screen, including one of the three remaining faces). The second group
was eliminated from further analysis. The reason for this was because we are
interested, in this study, in the fastest plausible response time after the music begins.
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Fig. 1. Comparison of first quartile 'first face' times between individual excerpts

Fig. 1 shows the response times for each individual excerpt by target emotion (the
emotion we supposed that the participant would select). First quartile response times
(the first face time of the participant who was 25% of participants behind the fastest
participant's first face time) were examined because we were interested in the fastest
plausible time that participants could make emotional responses. Median time, for
example, gives an estimate of typical response time, and minimum response time is
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susceptible to error, for example due to prevarication, random error or guessing. First
quartile time was therefore deemed a conservative and reasonable comprise (what we
term ‘plausibly fastest’). From a null-hypothesis perspective, each response time
within a target emotion would be identical, which seemed to be the case for ‘angry’
excerpts and for ‘sad’ excerpts. Yet some excerpts in other emotions, such as excerpt
3 for ‘calm’ and excerpt 2 for ‘excited’ and ‘scared’ stand out.

Therefore, the question arose, considering that both calm excerpts 1 and 3 were
putatively considered to be good examples of music that expressed that emotion in the
pilot study, why was there such a difference in response times? The difference
suggested that something in the music of the first excerpt made it easier to judge
quickly the intended expression. These two excerpts were therefore selected for closer
analysis.
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Fig. 2. Scatter chart depicting relationship between ‘first face’ first quartile response times for
each excerpt and number of cues available to the listener (total number of cues counted in that
excerpt before the first quartile time)

We were interested to see whether the number of cues available to the listener was
in any way related to the speed at which responses were made, i.e. the more cues
there were available to the participant, the quicker their response. The first level of
cue analysis involved a very basic level of coding. Using ‘Audacity’, each excerpt
was analysed in spectrographic form. A time label was entered at each occurrence of
an ‘event’ (e.g. a note, chord, cymbal clash) between the start of the excerpt and first
quartile time. At this level of coding, vertical events (i.e. simultaneous notes from
different instruments or chords) were treated as one event. It was not possible to
situate cues that unfolded in time in one location, i.e. with regard to a change in
loudness where the actual cue started or ended, or indeed where the information from
the cue was gleaned. Therefore, for simplicity, cues of variance were omitted at this
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stage. .txt files of the cue labels and times were then exported to facilitate counting.
Once the cues for each excerpt had been counted they were plotted on a graph along
with the first quartile time (Fig. 2).

The main hypothesis was that there would be a correlation between the number of
non-ambiguous cues available to the participants and the speed of their response.
However, Fig. 2 shows that, at least with a basic count of cues, this did not appear to
be the case. If it were, we might expect a trend to be visible where as the number of
cues increases, the response time decreases. The first quartile time for Angryl_Up
was one of the fastest (at 1.45s), yet participants only received three cues before that
time, whereas the fastest 25% of participants responding to Excited5_Cars required
thirteen unambiguous cues before feeling able to make a decision (managing only a
first quartile time of 2.51s).

This assumes however, that the spacing of cues was consistent and regular, but it
may_be that in some cases, for example, very few cues were available in the first
second followed by a many number in quick succession. Also, clearly the slower the
response time, the more cues there will be counted — simply due to the duration. If
Angryl_Up had, for example all three cues in the first second, and Excited5_Cars had
ten of its thirteen in the first second yet still yielded the slow first quartile time of
2.51s, it would be much stronger evidence against the number of cues being
important. Therefore, we counted the number of cues available in each excerpt within
the first second only.
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Fig. 3. Scatter chart depicting relationship between ‘first face’ first quartile response times for
each excerpt and number of cues available to participants within the first second

Again, there was no link between the number of cues available to the participant in
the first second and the response times. Furthermore, Fig. 3 shows that six of the
excerpts all contained three cues in the first second of music but yielded response
times ranging from 1.40s to 2.79s.
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4 Conclusions and Further Research

The present study examined timing and number of cues and suggests that the
initial emotional response to a piece of music is quite complex, and requires
considerable further research. Further research is required to examine whether the
quality of the cues are relevant in determining response speed. For example, some
cues might have a greater weighting than others, giving rise to a hierarchical cue
structure, as is the case in some theories of music cognition [15]. While other studies
described above have identified rapid identification of emotions in the order of one
second, our study was conducted with ecologically typical musical extracts, allowing
the underlying complexity of emotion response time to the start of a piece of music to
emerge. This has important implications for automated modelling of emotion in
music systems because until we can retrieve the underlying nature of human
emotional response to music at this transitional, initial orienting period, it will be
difficult for time varying models to produce psychologically plausible representations
of emotions at the start of a piece of music.
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Abstract. A practice-based project that explores design theories of spatial
music with choreographic concepts and practices. Aspects of Wave Field
Synthesis and Ambisonics technologies are discussed. A production of original
works for dance and music in surround sound constitutes the expected
outcomes.

Keywords: movement, dance, expression, surround sound, Ambisonics, Wave
Field Synthesis, choreography, perspective

1 Introduction

This paper is a presentation of the concepts and investigative ideas that constitute the
foundation of an ongoing practice based PhD research entitled ‘Sonic Choreography
for Surround Sound Environments’. The project explores the direct comparison of
artificial sound movement generated by surround sound technologies to dance
movement theories and practices. Through collaborative work with choreographers, it
will favour the formulation of sonic choreographic concepts in the context of a music
composition.

2 Methods

2.1 Aesthetic Research Practice Based

The whole project is an aesthetic research, it focuses on music composition and in
particular on the applicability of movement qualities to sound. The aim of the
research is to challenge existing practices by exploring them in full, to individuate
how musical scopes could be related to sonic choreographic effects in a clear and
satisfying manner. The collaboration with choreographers and dancers should
work as immediate visual contrast to sound spatial design, which, if it is consistent
enough, would counteract the presence of the performers in the space and the
ideas of the choreographers.

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
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2.2 Collaborative Work

The Game of Life Wave Field Synthesis (WFS) system consisting of 192 speakers
[1] will be used in several sessions, to create a piece for dance and music by June
2013. As part of the project a session of three days has already taken place, and
more are planned throughout the year.

At Goldsmiths University Digital Studios in London [2] two works with
Ambisonics technology are planned: the first work is based on 1st Order
Ambisonic [3], to be tested at the studios and in binaural, and the second for
Higher Order Ambisonics (HOA) [3] for an horizontal speakers array (for which
setup is yet to be found or arranged). Other institutions are considered.

The interest in developing two works for Ambisonics is due to the differences in
image resolution between Ist Order Ambisonics and HOA which shall be
discussed in this paper.

2.3 Interviews

This research involves contribution from many people including engineers,
composers, scientists, scholars and choreographers. Carrying out interviews to
gain further knowledge from those people with relevant expertise will add depth
to the research and thus it is a vital part of the project. This method is in its
arrangement phase.

3 Movement

A general concept of movement can be very difficult to define in many disciplines.
What type of phenomenon is movement and why does it hold such importance in the
arts?

3.1 In Dance

There is an extensive literature of studies on movement, most of them written by
dance practitioners. During the 1920s, Modern Dance flourished in Germany [4], and
later in America and the rest of Europe. The common thread in this pioneering age is
that movement speaks to the audience.

With Laban’s words [5]: “Movements can be executed with differing degrees of inner
participation and with greater or lesser intensity. They may be accelerated by an
exaggerated desire to reach a goal or retarded by a cautious doubting attitude. The
mover may be entirely concentrated on a movement and use the whole body in an act
of powerful resistance, or casually employ only part of the body with delicate touch.
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Thus we get different dynamic qualities. One of the basic nuances always shows
clearly distinguishable mental and emotional attitudes.” [6], and more: “Some of the
simplest correlations in space and expression can be described and comprehended
without any knowledge of fundamental spatial laws. For instance, when a movement
is accompanied by a secondary one in another part of the body in an opposite spatial
direction, it can easily be understood that the secondary movement might inhibit or
disturb the main movement.[...]Sometimes in this way dynamic nuances can be
explained by the spatial influence of secondary movements and tensions.”[6]. Laban’s
Dynamosphere, Kinesphere and Effort theories describe life as a stream of
movements, that contains and expresses emotions.

A former Laban student, Mary Wigman, a talented artist who pioneered the
Ausdrucktanz, stated: “Almost everything that is said about space can also be applied
to energy, since energy comes from space” [7], and “The absolute dance is
independent of any literary-interpretive content: it does not represent, it is; and its
effect on the spectator who is invited to experience the dancer’s experience is on a
mental-motoric level, exciting and moving” [8].

Breaking away from of the “Expressive” dance movements, more recent creators like
Cunningham where found describing: “Dancing provides an amplification of energy
that is not provided any other way, and that’s what interests me” [9], “There is an
ecstasy in dance beyond the idea of the movement being expressive of a particular
emotion or meaning. There can be an exaltation in the aura that the freedom of a
disciplined dancer provides, that is far beyond any literal rendition of meaning” [10].
Through these examples it appears that movement is transmitting or carrying
something valuable, and transferring this valuable energy to people in the form of
emotion, experience and artistic expression.

3.2 Expression

The meaning of expression is a critical topic, the sole term has been subject of many
philosophical and semiotic studies. The sentence ‘“Music is the relation between
sound and intellect” [11] contains a deep anthropological insight as it describes what
is found as musical as relative to the human intellect. Stravinsky highlighted in his
Poetics of Music [12], that music has no expression: ”in the pure state music is free
speculation”, which confirms the relativeness of the concept of expression and its
derivation from subjective appreciations/dislike factors out of the artist control.
Research in music psychoanalysis has proven how far we are from having found
stable solid notions for analysis, such as a neutral level [13] that would act as a
starting point for a useful observation of musical phenomena. This is still missing and
far from being defined, and methodologies are hence struggling to be successful.
Stravinsky again mentioned the artisan role of the composer [12], the homo faber,
sculpting sound material, which turns the attention on skill, mastery, seen as the only
real tangible thing against the relativeness of expression. The reality of music is the
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astonishing combinations a composer can create with sounds, not what the sound
means to anybody. Similarly, no matter what the expressive content of a movement
could be, the mastery of it constitutes a central assessment that needs to be investigate
through practice and observation.

4 Sound Movement

When the concept of movement is applied to sound, several distinctions must be
made. For instance we are referring to the movement of sound within a surround
sound environment, then for movement of sound it is intended the movement of a
virtual source, not a movement embedded into the sound (e.g. a sound like in a
recording of a park, the sudden movement of a bicycle), neither the sound wave
acoustical motion. Hence it could be helpful to refer to it as artificial sound
movement.

Source bonding concepts [14] refer to sound as a carrier of meaning, which is
inseparable and determines our understanding of it. Issues about direction, proximity
and individuality are well described in [15], and affect the way we create and
experience a music composition. The way in which sound image is represented into
the diffusion space is subject of accurate studies, whilst sound movement in current
literature appears to be relegated in a secondary position, like a less important part of
the overall sound image. Sometimes virtual sources movement practices are referred
to as successful, but unsatisfying the complex and full dimension of sound reality
[16]. Yet this is understood as confined in personal artistic interests, or sound material
choices, which doesn’t truly contradict the artistic relevance of movement of sound.
This research wants certainly to assess clarity and accuracy of the sonic image, and at
the same time to observe what attracts our attention in movement, in whichever form
it becomes manifest (as meaning/expression/feeling/energy/ecstasy... ), and how it
relates to the music discourse.

When a sound image appears in space, it is choreographically relevant: when a
movement burst out, it dictates symmetry, correspondence as it is engaging the space.
The connection with its content, a relation of consonance and amplification or of
reduction, contradiction, exaggeration of the sound reality and material, is part of the
artistic game, is how we want it to be or appear. When this connection comes to life,
its a tangible sign of the value of the existence/presence of the movement in the scene.

4.1 Decoding
The first issue is about how sound is diffused in the room. Different technologies have

different approaches for rendering the spatial attributes of sound. In this research I
take in consideration Wave Field Synthesis and Ambisonics, and in particular: 1st
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order Ambisonic in 3D, Higher Order Ambisonics (realistically for an horizontal array
only), WES synthesis of 192 speakers setup in a 10x10 meter space.

A loudspeakers system should be designed to give a realistic, natural impression of
space [16], and how it delivers this is crucial for the appreciation of movement as it is
for the sound image.

All of these techniques are not flawless, and many situations affect the clear
perception of sound movement, too many to be included in this paper. There is a
general assumption that, if a sound image is clear, choreography possibilities are then
absolute and unlimited. That is doubtful because of the presence of several perceptual
artefacts in movement process itself, and moreover because the system design
imposes a dominant sound projection perspective [20].

What it is here relevant to note is thus that the general rendition of sonic movement
through different decoding systems may have different results, which directly affect
the choreographic potential.

Ambisonics. Ambisonics technology works in different resolutions, and this affects
the way we experience sound. In 1st Order Ambisonics, the listening area is very
limited, emphasising the importance of a sweet spot. In HOA this tends to be reduced
because many other spherical harmonics are added to increase resolution, so that they
cover a wider listening area. Yet rendition of sound outside the sweet spot still
introduces artefacts, that affects the scene intelligibility, and generally it is thought
that the best perceptual location is to stand in the middle of the speakers perimeter
[15, 17 and 19]. Because of this, questions arise on how to show dance in the listening
space, and how sonic choreography could adapt to a dance in this space, given its ties
with Ambisonics spherical sound projection. It appears to me there is a perspective
conflict that as to be taken in consideration while composing, to be accommodated
artistically. Whilst music content could be infinite and borderless, sonic choreography
is more likely to be limited by and constructed around system characteristics.
According to the space and technology available a specific approach should be
favoured. This project is thus trying to build a sonic choreography on the 1st Order
Ambisonics characteristic emphasising a centric perspective of sound projection
through artistic exploration; a second experiment would be with HOA technology,
that will require as well a specific strategy. The point is that a sonic choreography
seems limited in its design as it responds to a perspective, and this perspective is
dictated by the system used, like in a dancer the body is the limit and range of the
expression.

Wavefield Synthesis. “Wave field synthesis (WFS) is a spatial sound field
reproduction technique that utilizes a high number of loudspeakers to create a virtual
auditory scene over a large listening area. It overcomes some of the limitations of
stereophonic reproduction techniques, like e. g. the sweet-spot” [18].
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This clearly puts WFS in a different context in respect to Ambisonics, and
comparisons are difficult and maybe pointless: this other paper [17] it’s indicative of
the irreducible differences between the two systems, Ambisonics and WEFS, in terms
of math, limits of sound image rendition (artefacts differences), and quality of
representation of the sound field.

For a dance performance with WES, the accompanying sonic choreography is
surrounding the audience, as listeners have to be inscribed into a perimeter of
speakers, but no center is needed for the perception, which allows several dispositions
of dancers, sounds and choreographies, including a frontal display of choreography,
which resemble the more common way to experience a dance performance. Whilst
WES seems not to affect the choreographic design by an imposed perspective of
sound projection, how the impression of depth is rendered has yet to be explored in
the project, especially how different locations and perspectives and relation between
locations of sound sources are actually perceived.

On these considerations it is in development a work plan for the collaboration with
choreographers in this particular space, for which the aim is to significantly
differentiate from the Ambisonics approach.

4.2 Encoding

For creating movements of sound, so called spatialisation tools within an authoring
framework [20] are needed. Movement design tools, for drawing trajectories of sound
in space should make available any type of geometrical operation, grouping/singling
of sources and trajectories, the possibility of a single and multiple virtual source
representation of the same sound, tools for dealing with speed, including correction or
realism of doppler effects and the relation with amplitude, gain attenuation and air
absorption filters, synthesis of early reflections and reverberation: all these processes
should be easily accessible by a composer, when inventing sonic choreographies; all
those sonic issues should also be addressed, for a consistent representation of sound
movement. For example, the current availability of plugins for encoding provides a
standard three coordinates system or azimuth and elevation, which satisfies mainly the
generic positioning of sounds in space. Although it is possible to use them to design
trajectory of movement, more sophisticated design tools are needed.

The project Holo Edit [21 and 20] seriously provided a model, based on a Digital
Audio Workstation (DAW) structure, for unify under the same interface a set of
geometrical and spatial transformations and a communication system through OSC
[22] protocol. Others platforms and plugins are worth mentioning (Open Music, the
ICST tools for Max/MSP, Jamoma, WigWare, Harpex-b and Ambisonic Studio), but
still they don’t represent a unified approach that satisfies movement design to its core.
This research, through direct comparison with dance, is trying to highlight these
problems as well to find solutions for them.
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The SpatDIF project is proposing a SDIF format for storing spatial information [20]
and OSC for streaming data, which is embedded within HoloEdit and few others
softwares. This should overcome the limit imposed by system design to aesthetic
invention as mentioned also here [20,2.2] .

Those two projects are based on a team of artists and researchers: that is encouraging
as for the production of surround sound the development of movement practises and
technology should not go without the composers input and experience, and I’d add as
well of choreographers and motion experts.

5 Conclusion

This research is posing technical and theoretical interrogatives for the analysis of a
creative process involving music composition for surround sound environments. The
artistic meaning of sound movement is investigated, for which the realistic
possibilities are assessed for the different systems used. The hope is, through
interviews and demonstrations and with an aesthetic and compositional approach, to
contribute in reaching the core of the problems to the improvement of the operational
framework, knowledge and artistic potential of sonic movement design.
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Abstract. The constant growth of online music dataset and applica-
tions has required advances in MIR Research. Music genres and anno-
tated mood have received much attention in the last decades as descrip-
tors of content-based systems. However, their inherent relationship is
rarely explored in the literature. Here, we investigate whether or not the
presence of tonal and rhythmic motifs in the melody can be used for
establishing a relationship between genres and subjective aspects such
as the mood,dynamism and emotion. Our approach uses symbolic rep-
resentation of music and is applied to eight different genres.

Keywords: music genres, melodic motifs, rhythm, mood.

1 Introduction

Online music data has significantly increased in number and size in the last
decade. Specially, web radios and online stations have received much attention,
due to recent research involving music recommendations systems applied for
large-scale music collections. In this scenery, music genres together with mood
in music are particularly interesting descriptors, since they summarize common
characteristics of music and are included in the set of principal tools for content-
based music retrieval and organization.

There are many previous works dealing with the task of automatic classifi-
cation of music genres [1]. There is also some work related to the classification
of mood in music [2]. Mood and emotion classifications are challenging tasks,
since they involve subjective notions and face the difficulty of establishing an
accepted taxonomy of mood and emotions.

The inherent correlation of music genres and mood have not been very much
explored in the literature. In [3], the authors obtained substantial improvement
in music emotion classification by including the genre information audio songs.
The work of Hu and Downie [4] also explores the relationships of mood-genre,
mood-artist, and mood-recommendation usages. They applied statistical analy-
sis to metadata collections like All Music Guide.com, epinions.com and Last.fm,

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
19-22 June 2012, Queen Mary University of London
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demonstrating that important evidences in genre-mood and artist-mood rela-
tionships could be used in the development of a more succinct dataset of “mood-
spaces” that minimizes redundant problems in emotional terms.

Within this context, the paper aims at contributing to the existing investiga-
tion of how music genres can be related with mood and thus establish comple-
mentary descriptors that can be used to improve current applications of music
information retrieval systems. Our method is applied to MIDI files and based
on derived temporal configuration patterns in the melodies of songs, also known
as motifs. We analyse the presence of tonal and rhythmic motifs, demonstrating
that they can be linked to the way we describe or feel a specific genre. Our mo-
tivation for analyzing the melodies is associated with the fact that the melody
is one of the first music aspects that make us recognize a song. In addition, it is
the contour of a melody what we usually first memorize from a song [5].

The remainder of the paper is organized as follows. Section 2 describes the
method and the used dataset. Section 3 dwells the principal results and discus-
sion. Finally, Section 4 presents the concluding remarks.

2 Methods

The proposed method is summarized in Figure 1 and detailed in the following.

MIDI Database

Blues Country Dance Bossa Nova| Pop rock Punk Rap Reggae
Samples mpl mpl m\ mples || Samples mpl mpl

Melody Extractlon
Not bsolute pitch ;
(“?é;:fz;p'w (Dt )

(Motifs Identification )

(Dynamic and Mood Analysis)

Fig. 1. The proposed method. After selecting MIDI songs from different genres, the
voice related to the melody is extracted and represented by a vector of absolute pitches
and by a vector of the note values. Absolute pitches are indicated as MIDI numbers.
For example, C5 is 72 and C4 is 60. Note values are represented as relative durations
(e.g. the eighth note takes the value 0.5 and the quarter note takes the value 1).

2.1 Data Description

Our database consists of eight music genres, namely, blues (34 songs), country
(30 songs), dance (29 songs), bossa-nova (Brazilian music, 29 songs), punk (40
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songs), pop/rock (39 songs), rap (5 songs), and reggae (12 songs). These genres
are widely known and relatively easy to obtain as MIDI files in the Internet
with a reasonable quality. We chose to use symbolic representation because it
is a compact representation. Specially, the MIDI format offers the possibility of
separating the melody voice, providing a deep analysis of the music elements.
To edit the MIDI files, the Sibelius software was used together with the free
Midi Toolbox for Matlab computing environment [6]. The voice related to the
melody (or singing voice) was extracted in each song and represented as a note
matrix. Each column of the note matrix contains information about quantities
such as the relative duration (in beats), MIDI channel, MIDI pitch, or intensity.
We propose to analyse the temporal patterns in the melody following two
different procedures: considering the absolute pitch (AP), and the relative note
value of the pitches (NV). For the AP representation the pitches are the events,
for example, C4, D4, F#4, C5, D5 and so on. For the NV case, each event
represents one possible note value, such as half note, quarter note, or eighth note.
The relative note value is represented in this matrix through relative numbers
(for example, 1 for quarter note, 0.5 for eighth note, 0.25 for sixteenth note and
so on). In order to deal with possible fluctuations in tempo, we deactivated an
option in Sibelius called “Live Playback”. In this way, the note values in the
MIDI file preserve their relative proportion (e.g., the eighth note is always 0.5).
To illustrate the idea, Figure 2 shows part of the melody of the song “From
me to you” (The Beatles). The respective AP and NV vectors are also presented.

9 A I I I

(Y j L4 » j Ll j 3 ;—L [4 4 j i #
AP vector 60 62 64 6260 62 62 57 60 62 64 62 60 72 72 71
ND vector g5 05 0505 105 1 05 3 0505 0505 1051 05 3

Fig. 2. An example of the representation of the melody of the song “From me to you”
(The Beatles) using the AP (absolute pitch) and NV (note value) vectors.

2.2 Finding the Motifs

Music motifs (also known as “motives”) are fundamental in music compositions.
Basically, there are two forms of constructing music motifs: keeping the tonal
sequence and changing the rhythmic structure; or keeping the rhythmic sequence
and changing the tonal sequence. We consider both cases in this work. Due to
repetitions and returns in popular music, it is also possible to find motifs that
retain tonal and rhythmic sequences at the same time.

Our approach to find the tonal and rhythmic motifs in the melodies is rel-
atively straightforward. In order to exemplify the idea, consider the AP vector
from the melody in Figure 2. In the first step, we iteratively compare the AP
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vector with shifted versions of itself. The comparison is done note by note, as
illustrated in Table 1. The size of the motif is determined by the number of notes
in the original vector that coincide with those in the shifted vector. For each shift
degree, we count how many times motifs of different sizes occur. Table 1 shows
that shifting this sequence by a lag of two results in three motifs of size one;
while shifting by a lag of eight results in one motifs of size four, representing the
main tonal and rhythmic motif of the adopted example.

AP vector 60 62 64 62 60 62 62 57 60 62 64 62 60 72 72 71
shift size 1 - 60 62 64 62 60 62 62 57 60 62 64 62 60 72 72
match - F F F F FTFFFFFFFTTF
AP vector 60 62 64 62 60 62 62 57 60 62 64 62 60 72 72 71
shift size 2 - - 60 62 64 62 60 62 62 57 60 62 64 62 60 72
matches - - FTF TFFFFFTVFFFF
AP vector 60 62 64 62 60 62 62 57 60 62 64 62 60 72 72 71
shift size 8 - - - - - - - - 6062 64 62 60 62 62 57
matches - - - - - - - - T T T TTVFVFF

Table 1. Examples of tonal motifs for the melodic sequence in Figure 2.

This process establishes a matrix that we denote as APM with rows and
columns representing the shift iterations and the quantity of motifs of different
size, respectively. For example, the entry APM(1,3) indicates how many motifs of
size three occurred when the AP vector was shifted by a lag of size one. Finally,
by calculating the average value of each column in this matrix, we obtain the
average frequency that motifs of different sizes occurred in the melody of the
corresponding song. Small motifs will not be used in our analysis since they do
not necessarily represent a relevant repetitive patterns and are expected to have
a highly random character. We arbitrarily consider motifs of size five or higher.

NV duration vector 0.5 0.50.50.5 1 0.5 1 0.5 3 05050505 1 0.5 1 0.5 3

shift size 1 - 05050505 1 05 1 05 3 05050505 1 05 1 0.5
match - T T T FF F FF F TTTV FVFVF F F
NV duration vector 0.5 0.50.50.5 1 05 1 05 3 05050505 1 05 1 05 3
shift size 2 - - 050505051 05105 3 05050505 1 05 1
matches - - T TFTTTUVF¥ TPF TTUFTTTF

NV duration vector 0.5 0.50.50.5 1 05 1 05 3 05050505 1 05 1 0.5
shift size 9 - - - - - - - - -05050505 1051 05 3
matches - - T T T T T T T T T

Table 2. Examples of rhythmic motifs for the melodic sequence in Figure 2.

The rhythmic motifs are obtained following the same idea. Table 2 demon-
strates comparisons for the Beatles’ melody shown in Figure 2. Comparison of

155



Music Genres and their expression Using Melodic Motifs

Table 2 with Table 1 reveal that the information from rhythmic motifs differs
from that brought by the analysis of tonal motifs. Shifting the sequence by a lag
of nine, it is possible to find the main rhythmic motif of the sequence.

3 Results and Discussion

The presence of motifs was analised for each one of the eight genres. We first
investigate whether or not the songs from different genres can be discriminated
by the frequency of repeated tonal or rhythmic motifs in their melodies. We then
explore the association of motifs with positive or negative emotions based on the
link between music factors (rhythm, melody, and musical form) and emotions
proposed in [11] (see summary in Table 3).

Rhythm Regular/smooth ~ happiness, dignity, majesty, peacefulness
Irregular/complex amusement, uneasiness, anger
Flowing/fluent happy/gay, graceful, dreamy.
Melody Wide melodic range joy, uneasiness
Narrow melodic range sad, sentimental, delicate
Stepwise motion dullness
Musical form  High complexity tension, sadness
Low complexity joy, peace, relaxation

Table 3. Expression of emotions according to different music factors: rhythm, melody
and musical form [11].

As described earlier, we calculate the quantity of tonal and rhythmic motifs
from different sizes for each genre. The tonal motifs bring information about
the tonal contour of the melody. Predictable or modular melodies have constant
contours, with many repeated parts. On the other hand, more dynamic contours
are usually encountered in melodies with motifs that do not have a high degree of
repetition. Figure 3 illustrates the countour of two different melodies, represent-
ing the genres blues and rap. While the rap melody is significantly regular, the
blues melody is more dynamic and has many variations in the repeated parts.

The rhythmic contour of the melodies brings different information. Figure
4 presents the same examples as in Figure 3. The rhythmic structure in blues
is significantly dynamic. Rap has a more regular rhythmic pattern, but it is
interesting to note that the dynamics of its rhythmic contour differs from its
tonal counterpart. Thus, we propose to link both aspects in order to correlate
genre and mood. The mood annotations for the genres analysed in this work
were mainly obtained from the All Music Guide site [7].

Figure 5 (a) and Figure 5 (b) show, respectively, the analysis for the tonal and
rhythmic motifs. In both cases, we plotted the motif sizes against the average
quantity of times it appears for each genre.
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Fig. 3. The AP vector of two melodies. (a) A blues melody by the music Sweet Sizteen
by BB King and (b) A rap melody by the music B-Boys and Flygirls by Bomfunk MCs.
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Fig. 5. The configuration of (a) tonal and (b) rhythmic motifs in the melodies of the
music genres.
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Rap has the higher quantity of tonal motifs, and the second higher quantity
of rhythmic motifs. According to [8], rap is known by its chanted rhyming lyrics
and regular flow. Rap artists generally receive mood annotations like cheerful,
fun, exciting, harsh and angry. When compared to Table 3, the annotations agree
with regular rhythm and flowing. Rapping consists of mainly three componentes:
content, flow, and delivery [8]. “Flow” is related to the rhythm and rhyme aspects
and how they interact, while “delivery” contains elements like pitch, timbre
and volume and it is more related to the melody or the form the rap is sung.
This may explain why rap has the second highest quantity of rhythmic motifs,
differing from tonal motifs, since the tonal motifs mainly represents the spoken
characteristic of the genre. The delivery may contain more irregular components,
which may contribute to the negative annotations. Rap was influenced by reggae
[8]. They share common characteristics like the syncopated and regular rhythms.
The melody of reggae is characterised by a simple feel and sense of phrasing [7].
This agrees with the results, since reggae is the second higher in presence of
tonal motifs and the third higher in the presence of rhythmic motifs. Common
annotations for reggae albums are relaxing, restrained and soothing.

Dance is the most rhythmically repetitive genre in the results. While the tonal
sequence may present some variations, dance music has a defined rhythmic beat.
This is in agreement with the mood annotations found in [7] such as energetic,
happiness and lively. The constancy and modularity in dance music determines
its intrinsic attribute: a steady rhythm that stimulates body movements.

Blues and country genres usually do not aggregate many repeated motifs in
their melodies, either in tonal or rhythmic aspects. Both genres receive anno-
tations like complex, sophisticated, sentimental and stylish. Country and blues
share similar themes and songs, since blues was a stylistic origin of country. The
melodies of both genres are characterized by the selection of specific notes (for
instance, the flattened third, fifth and seventh) and narrow melodic sequences
[10]. This contributes for annotations like sentimental or melancholily. Country
songs are formed in simple chords and a plain melody, but these basic forms al-
low a substantial range of variations and different styles, from resolved patterns
to improvisations [7]. This is reflected in the results, since country and blues
have a small quantity of repeated motives when compared to the other genres.

Rock music has a defined rhythmic structure but it is usually more dynamic
than, for example, dance. Common annotations for rock albums are: energetic,
ambitious and exciting. Although referred here as a genre, punk is also known
as a rock style, with basic chords progressions and simple melody (played in
a louder and faster manner [7]). This is reflected in the results, mainly in the
rhythmic analysis of the melody, since punk seems to have a considerable number
of rhythmic motifs.

Bossa-nova is a kind of Brazilian music originated from jazz and samba. It
is harmonically complex, but its melodies have a constant rhythm [10]. This
explains why it is similar to rock when analyzing the rhythmic motifs. However,
the lyrics in bossa-nova are usually richer than in rock in terms of tonal variations
[10], an aspect well captured by our results regarding the tonal motifs.
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4 Concluding Remarks

We proposed a link between music genre and mood using the presence of melodic
motifs in the songs. The melody or vocal track is extracted from MIDI files and
represented by a vector of note pithes and note values. We derived a method to
identify tonal and rhythmic motifs in each melody and relate the frequency of
their occurrence to mood notions. For validation purposes, we collected mood
annotations from artists in our dataset using the All Music Guide site [7].

Genres like rap, dance, reggae and rock, known for their constant rhythmic
patterns were found to have a higher quantity of motifs in their melody. Blues
and country confirmed their fame to be “more sophisticated” genres, since it is
not common to find many motifs that are fully repeated. We expect that such
kind of information can help to improve music-content classification systems.

This work represents the first steps of a deeper study which will include a
more complete examination of genres and other evaluation methods. In principle,
it would be relatively straightforward to include other characteristics of songs in
our analysis, such as rhythm of the percussion tracks and instrumentation.

Acknowledgments. Debora C Correa thanks Fapesp financial support under
process 2009/50142-0. Luciano da F. Costa thanks CNPq and Fapesp financial
support under processes 301303/06-1 and 573583/2008-0, respectively.
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Abstract. Music appears to deeply affect emotional, cerebral and phys-
iological states, and its effect on stress and anxiety has been established
using a variety of self-report, physiological, and observational means.
Yet, the relationship between specific musical parameters and emotional
responses is still not clear. One issue is that precise, replicable and in-
dependent control of musical parameters is often difficult to obtain from
human performers. However, it is now possible to generate expressive mu-
sical material such as pitch, velocity, articulation, tempo, scale, mode,
harmony and timbre using synthetic music systems. In this study, we
use a synthetic music system called the SMuSe, to generate a set of well-
controlled musical stimuli, and analyze the influence of musical structure,
performance variations and timbre on emotional responses.The subjec-
tive emotional responses we obtained from a group of 13 participants
on the scale of valence, arousal and dominance were similar to previous
studies that used human-produced musical excerpts. This validates the
use of a synthetic music system to evoke and study emotional responses
in a controlled manner.

Keywords: music-evoked emotion, synthetic music system

1 Introduction

It is widely acknowledged that music can evoke emotions and synchronized reac-
tions of experiential, expressive and physiological components of emotion have
been observed while listening to music [1]. A key question is how musical pa-
rameters can be mapped to emotional states of valence, arousal and dominance.
In most of the cases, studies on music and emotion are based on the same
paradigm: one measures emotional responses while the participant is presented
with an excerpt of recorded music. These recordings are often extracted from
well-known pieces of the repertoire and interpreted by human performers who
follow specific expressive instructions. One drawback of this methodology is that
expressive interpretation can vary quite a lot from one performer to another,
which compromises the generality of the results. Moreover, it is difficult, even
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for a professional musician, to accurately modulate one single expressive dimen-
sion independently of the others. Many dimensions of the stimuli might not be
controlled for. Besides, pre-made recordings do not provide any control over the
musical content and structure.

In this paper, we propose to tackle these limitations by using a synthetic
composition system called the SMuSe [2,3] to generate stimuli for the experi-
ment. The SMuSe allows to generate synthetic musical pieces and to modulate
expressive musical material such as pitch, velocity, articulation, tempo, scale,
mode, harmony and timbre. It provides accurate, replicable and independent
control over perceptually relevant time-varying dimensions of music.

Emotional responses to music most probably involve different types of mech-
anisms such as cognitive appraisal, brain stem reflexes, contagion, conditioning,
episodic memory, or expectancy [4]. In this study, we focused on the direct rela-
tionship between basic perceptual acoustic properties and emotional responses
of a reflexive type. As a first approach to assess the participants’ emotional re-
sponses, we looked at their subjective responses following the well-established
three dimensional theory of emotions (valence, arousal and dominance) illus-
trated by the Self Assessment Manikin (SAM) scale [5,6].

2 Methods

2.1 Stimuli

This experiment investigates the effects of a set of well-defined musical param-
eters within the three main musical determinants of emotions, namely struc-
ture, performance and timbre. In order to obtain a well-parameterized set of
stimuli, all the sound samples were synthetically generated. The composition
engine SMuSe' allowed the modulation of macro-level musical parameters (con-
tributing to structure, expressivity) via a graphical user interface [2,3], while the
physically-informed synthesizer PhySynth? allowed to control micro-level sound
parameters [7] (contributing to timbre). Each parameter was considered at three
different levels (Low, Medium, High). All the sound samples® were 5 s. long
and normalized in amplitude with the Peak Pro* audio editing and processing
software. .

Musical Structure: To look at the influence of musical structure on emotion,
we focused on two simple but fundamental structural parameters namely register
(Bass, Tenor and Soprano) and mode (Random, C Minor, C Major ). A total of
9 sound samples (3 Register * 3 Mode levels) were generated by SMuSe (Figure
1).

! http://goo.gl/Vziti
2 http://goo.gl/zRLuC
3 http://goo.gl/5iRMO
4 http://www.bias-inc.com/
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Fig. 1. Musical structure samples: Register and Mode are modulated over 9 se-
quences (3*3 combinations)

Expressivity Parameters: Our study of the influence of musical performance
parameters on emotion relies on three expressive parameters, namely tempo, dy-
namics, and articulation that are commonly modulated by live musicians during
performance. A total of 27 sound samples (3 Tempo * 3 Dynamics * 3 Articula-
tion) were generated by SMuSe (Figure 2).

Lento Moderato Presto
(50 BPM) (100 BPM) (200 BPM)
Piano Mezzo Forte Forte
(36) (80) (100)
Staccato Regular Legato
(0.3) (1) (1.8)

Fig. 2. Musical performance samples: 3 performance parameters were modulated
over 27 musical sequences (3*3*3 combinations of Tempo (BPM), Dynamics (MIDI
velocity value) and Articulation (duration multiplication factor) levels).

Timbre: For timbre, we focused on parameters that relate to the three main
dimension of timbre namely brightness (controlled by tristimulus value), attack-
time and spectral flux (controlled by damping). A total of 27 sound samples (3
Attack Time * 3 Brightness * 3 Damping) were generated by PhySynth (Figure
3). For a more detailed description of the timbre parameters, refer to [7].
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Medium

(50 ms)

Regular Bright
(T2) (T3)

Fig. 3. Timbre samples: 3 timbre parameters are modulated over 27 samples (3*3*3
combinations of Attack (ms), Brightness (tristimulus band), Damping (relative damp-
ing a)). The other parameters of PhySynth were fixed: decay=300ms, sustain=900ms,
release=500ms and global damping oy = 0.23.

2.2 Procedure

We investigated the influence of different sound features on the emotional state of
the patients using a fully automated and computer-based stimulus presentation
and response registration system. In our experiment, each subject was seated in
front of a PC computer with a 15.4” LCD screen and interacted with custom-
made stimulus delivery and data acquisition software called PsyMuse® (Figure
4) made with the Max-MSP ¢ programming language [3]. Sound stimuli were
presented through headphones (K-66 from AKG).

At the beginning of the experiment, the subject was exposed to a sinusoidal
sound generator to calibrate the sound level to a comfortable level and was ex-
plained how to use PsyMuse’s interface (Figure 4). Subsequently, a number of
sound samples with specific sonic characteristics were presented together with
the different scales (Figure 4) in three experimental blocks (structure, perfor-
mance, timbre) containing all the sound conditions presented randomly.

For each block, after each sound, the participants rated the sound in terms
of its emotional content (valence, arousal, dominance) by clicking on the SAM
manikin representing her emotion [6]. The participants were given the possibil-
ity to repeat the playback of the samples. The SAM 5 points graphical scale
gave a score (from 0 to 4) where 0 corresponds to the most dominated, aroused
and positive and 4 to the most dominant, calm and negative (Figure 4). The
data was automatically stored into a SQLite” database composed of a table for

5 http://goo.gl/fx00L
5 http://cycling74.com/
" http://www.sqlite.org/
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Fig. 4. The presentation software PsyMuse uses the SAM scales (axes of Domi-
nance, Arousal and Valence) [6] to measure the participant’s emotional responses to a
database of sounds.

%

demographics and a table containing the emotional ratings. SPSS® (from IBM)
statistical software suite was used to assess the significance of the influence of
sound parameters on the affective responses of the subjects .

2.3 Participants

A total of N=13 university students (5 women, M,4e = 25.8, range=22-31) with
normal hearing took part in the pilot experiment. The experiment was conducted
in accordance with the ethical standards laid down in the 1964 Declaration of
Helsinki®. Six of the subjects had musical background ranging from two to seven
years of instrumental practice.

3 Results

The experiment followed a blocked within-subject design where for each of the
three block (structure, performance, timbre) every participant experienced all
the conditions in random order.

3.1 Musical Structure

To study the emotional effect of the structural aspects of music, we looked at two
independent factors (register and mode) with three levels each (soprano, bass,
tenor and major, minor, random respectively) and three dependent variables
(Arousal, Valence, Dominance). The Kolmogorov-Smirnov test showed that the

8 http://www.spss.com/
¥ http://www.wma.net/en/30publications/10policies/b3/index.html
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data is normally distributed. Hence, we carried a Two-Way Repeated Measure
Multivariate Analysis of Variance (MANOVA).

The analysis showed a multivariate effect for the mode * register interaction
V(12,144) = 1.92,p < 0.05. Mauchly tests indicated that assumption of spheric-
ity is met for the main effects of register and mode as well as for the interaction
effect. Hence we did not correct the F-ratios for follow-up univariate analysis.

Follow-up univariate analysis revealed an effect of register on arousal
F(2,24) = 2.70,p < 0.05 and mode on valence F(2,24) = 3.08,p < 0.05 as
well as a mode * register interaction effect on arousal F'(4,48) = 2.24,p < 0.05,
dominance F(4,48) = 2.64,p < 0.05 and valence F'(4,48) = 2.73,p < 0.05 (Cf.
Table 1).

ANOVAs
Register Mode Register *
Mode

Arousal | F(2,24)=2.70, NS F(4,48)=2.238,
*p<.05 *p<0.05

Valence NS F(2, 24)=3.079, | F(4,48)=2.636,
*p<0.05 p<0.05

Dominance NS NS F(4,48)—2.731,
*p<0.05

Table 1. Effect of mode and register on the emotional scales of arousal, valence
and dominance: statistically significant effects.

A post-hoc pairwise comparison with Bonferroni correction showed a signifi-
cant mean difference of -0.3 between High and Low register and of -0.18 between
High and Medium on the arousal scale (Figure 5 B). High register appeared
more arousing than medium and low register.

A pairwise comparison with Bonferroni correction showed a significant mean
difference of -0.436 between random and major (Figure 5 A). Random mode was
perceived as more negative than major mode.
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22-
2.4- | | | | |
random minor major bass tenor soprano

mode register

Fig.5. Influence of structural parameters (register and mode) on arousal
and valence. A) A musical sequence played using random notes and using a minor
scale is perceived as significantly more negative than a sequence played using a major
scale. B) A musical sequence played in the soprano range (respectively bass range)
is significantly more (respectively less) arousing than the same sequence played in the
tenor range. Estimated Marginal Means are obtained by taking the average of the
means for a given condition.

The interaction effect between mode and register suggests that the random
mode has a tendency to make a melody with medium register less arousing
(Figure 6, A). Moreover, the minor mode tended to make high register more
positive and low register more negative (Figure 6, B). The combination of high
register and random mode created a sensation of dominance (Figure 6, C).

3.2 Expressive Performance Parameters

To study the emotional effect of some expressive aspects of music during perfor-
mance, we decided to look at three independent factors (Articulation, Tempo,
Dynamics) with three levels each (high, low, medium) and three dependent vari-
ables (Arousal, Valence, Dominance). The Kolmogorov-Smirnov test showed that
the data was normally distributed. We did a Three-Way Repeated Measure Mul-
tivariate Analysis of Variance.

The analysis showed a multivariate effect for Articulation V'(4.16, 3) < 0.05,
Tempo V(11.6,3) < 0.01 and dynamics V(34.9,3) < 0.01. No interaction
effects were found.

Mauchly tests indicated that the assumption of sphericity was met for the
main effects of articulation, tempo and dynamics on arousal and valence but not
dominance. Hence we corrected the F-ratios for univariate analysis for dominance
with Greenhouse-Geisser.
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Fig. 6. Structure: interaction between mode and register for arousal, valence
and dominance. A) When using a random scale, a sequence in the tenor range (level
3) becomes less arousing B) When using a minor scale , a sequence played within the
soprano range becomes the most positive. C) When using a random scale, bass and
soprano sequences are the most dominant whereas tenor becomes the less dominant.

ANOVAs
Articulation Tempo Dynamics
Arousal F(2,24)=6.77, F(2,24)=27.1, | F(2,24)=45.78,
45 <0.01 450 20,001 8% <0.001
Valence F(2,24)="7.32, F(2, 24)=4.4, F(2,24)=19,
**p<0.01 *p<0.05 ***p<0.001
Dominance NS F(1.29,17.66)=8.08, F(2,24)=9.7,
**p<0.01 **p<0.01

Table 2. Effect of articulation, tempo and dynamics on self-reported emotional
responses on the scale of valence, arousal and dominance: statistically significant effects.
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Arousal Follow-up univariate analysis revealed an effect of articulation F'(6.76,2) <
0.01, tempo F(27.1,2) < 0.01, and dynamics F(45.77,2) < 0.05 on arousal
(Table 2).

A post-hoc pairwise comparison with Bonferroni correction showed a sig-
nificant mean difference of 0.32 between the articulation staccato and legato
(Figure 7 A). The musical sequence played staccato was perceived as more arous-

ing.

A pairwise comparison with Bonferroni correction showed a significant mean
difference of -1.316 between high tempo and low tempo and -0.89 between high
and medium tempo (Figure 7 B). This shows that a musical sequence with higher
tempi was perceived as more arousing.

A pairwise comparison with Bonferroni correction showed a significant mean
difference of -0.8 between forte and piano dynamics, -0.385 between forte and
regular and 0.41 between piano and regular (Figure 7 C). This shows that a
musical sequence played at higher dynamics was perceived as more arousing.

A B
__16- — = _ 1.0
F16- == G 15-
Y S 20-
S 2.0- | =<
2.2- 1 25-
I I I I I I
staccato normal legato lento moderato presto
articulation tempo
C
1.4-
i
3 2.0-
© 2.2-
2.4-

I I I
piano mezzo forte forte
dynamics

Fig. 7. Effect of performance parameters (Articulation, Tempo and Dynam-
ics) on Arousal. A) A sequence played with articulation staccato is more arousing
than legato B) A sequence played with the tempo indication presto is more arousing
than both moderato and lento. C) A sequence played forte (respectively piano) was
more arousing (respectively less arousing) than the same sequence played mezzo forte.
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Valence Follow-up univariate analysis revealed an effect of articulation F(7.31,2) <
0.01, tempo F(4.3,2) < 0.01, and dynamics F'(18.9,2) < 0.01 on valence (Ta-
ble 2)

A post-hoc pairwise comparison with Bonferroni correction showed a sig-
nificant mean difference of -0.32 between the articulation staccato and legato
(Figure 7 A). The musical sequences played with shorter articulations were per-
ceived as more positive.

A pairwise comparison with Bonferroni correction showed a significant mean
difference of 0.48 between high tempo and medium tempo (Figure 8 B). This
shows that sequences with higher tempi tended be perceived as more negatively
valenced.

A pairwise comparison with Bonferroni correction showed a significant mean
difference of 0.77 between high and low dynamics and -0.513 between low and
medium. (Figure 8 C). This shows that musical sequences played with higher
dynamics were perceived more negatively.

A B
2.0- 2.0 e

() — [0

Qoo- ] S22- |

o) S — Coa- — —
‘_>“ 24— / © 2.4

> 26-
2.6- m——

| | 2.8~ [ [ [
staccato normal legato lento moderato presto
articulation tempo

I I I
piano mezzo forte forte

dynamics

Fig. 8. Effect of performance parameters (Articulation, Tempo and Dynam-
ics) on Valence. A) A musical sequence played staccato induce a more negative
reaction than when played legato B) A musical sequence played presto is also inducing
a more negative response than played moderato. C) A musical sequence played forte
(respectively piano) is rated as more negative (respectively positive) than a sequence
played mezzo forte.
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Dominance Follow-up univariate analysis revealed an effect Tempo F(8,2) <
0.01, and dynamics F(9.7,2) < 0.01 on valence (Table 2).

A pairwise comparison with Bonferroni correction showed a significant mean
difference of -0.821 between high tempo and low tempo and -0.53 between high
tempo and medium tempo (Figure 9 A). This shows that sequences with higher
tempi tended to make the listener feel dominated.

A pairwise comparison with Bonferroni correction showed a significant mean
difference of -0.55 between high and low dynamics and 0.308 between low and
medium (Figure 9 B). This shows that when listening to musical sequences played
with higher dynamics, the participants felt more dominated.

— 2.0-
8 8 - =
220~ c
g g
€. ‘g 22~
522 g =
© © S
2.4- = 24—
2.6-
v 26- |
| | | | | |
lento moderato presto piano mezzo forte forte
tempo dynamics

Fig. 9. Effect of performance parameters (Tempo and Dynamics) on Dom-
inance. A) A musical sequence played with a tempo presto (repectively lento) is
considered more dominant (respectively less dominant) than played moderato B) A
musical sequence played forte (respectively piano) is considered more dominant (re-
spectively less dominant) than played mezzo-forte

3.3 Timbre

To study the emotional effect of the timbral aspects of music, we decided to look
at three independent factors known to contribute to the perception of Timbre
[9,10,11] (Attack time, Damping and Brightness) with three levels each (high,
low, medium) and three dependent variables (Arousal, Valence, Dominance).
The Kolmogorov-Smirnov test showed that the data is normally distributed. We
did a Three-Way Repeated Measure Multivariate Analysis of Variance.

The analysis showed a multivariate effect for brightness V' (6,34) = 3.76,p <
0.01, damping V' (6,34) = 3.22,p < 0.05 and attack time V(6,34) = 4.19,p <
0.01 and an interaction effect of brightness x damping V' (12,108) = 2.8 < 0.01
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Mauchly tests indicated that assumption of sphericity was met for the main
effects of articulation, tempo and dynamics on arousal and valence but not dom-
inance. Hence we corrected the F-ratios for univariate analysis for dominance
with Greenhouse-Geisser.

ANOVAs
Brightness Damping Attack Brightness*
Damping
Arousal | F(2,18)=29.09, | F(2,18)=16.03, F(2,18)=3.54, F(4,36)=7.47,
***p<0.001 ***p<0.001 *p<0.05 ***p<0.001
Valence F(2,18)=5.99, NS F(2,18)=7.26, F(4,36)=5.82,
**p<0.01 **p<0.01 **p<0.01
Dominance| F(1.49,13.45) F(1.05,10.915) NS NS
=6.55, *p<0.05 | =4.7, *p<0.05
Table 3. Effect of brightness, damping and attack on self-reported emotion on

the scales of valence, arousal and dominance: statistically significant effects.

Arousal Follow-up univariate analysis revealed the main effects of Bright-
ness F(2,18) = 29.09 < 0.001, Damping F(2,18) = 16.03 < 0.001, At-
tack F(2,18) = 3.54 < 0.05, and interaction effect Brightness * Damping
F(4,36) = 7.47,p < 0.001 on Arousal (Figure 3).

A post-hoc pairwise comparison with Bonferroni correction showed a signif-
icant mean difference between high, low and medium brightness. There was a
significant difference of -1.18 between high and low brightness, -0.450 between
high and medium and -0.73 between medium and low. The brighter the sounds
the more arousing.

Similarly significant mean difference of .780 between high and low damping
and -0.37 between low and medium damping were found. The more damped, the
less arousing.

For the attack time parameter, a significant mean difference of -0.11 was

found between short and medium attack. Shorter attack time were found more
arousing.

171



B
20- ————
2.0-
- . .
g 25 § 24-
o e
® @ 2.6 —
3.0- 2.8 3
| | | 3.0- | | |
dull regular bright low medium high
brightness damping
[ D
2.4- 154 damping
T - 1 ®2.0- low
Sos- ]
o < 25— —e— medium
© _ c =
2.6- 3.0 high
| I | | | |
short medium long dull regular  bright
attack brightness

Fig. 10. Effect of timbre parameters (Brightness, Damping and Attack time)
on Arousal. A) Brighter sounds induced more arousing responses. B) Sounds with
more damping were less arousing. C) Sounds with short attack time were more arousing

than medium attack time. D) Interaction effects show that less damping and more
brightness lead to more arousal.

Valence Follow-up univariate analysis revealed main effects of Brightness
F(2,18) = 5.99 < 0.01 and Attack F(2,18) = 7.26 < 0.01, and interaction
effect Brightness * Damping F(4,36) = 5.82,p < 0.01 on Valence (Figure 3).

Follow up pairwise comparisons with Bonferroni correction showed signifi-
cant mean differences of 0.78 between high and low brightness and 0.19 be-

tween short and long attacks and long and medium attacks. Longer attacks and
brighter sounds were perceived as more negative (Figure 11).
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Fig. 11. Effect of timbre parameters (Brightness, Damping and Attack time)
on Valence. A) Longer attack time are perceived as more negative B) Bright sounds
tend to be perceived more negatively than dull sounds C) Interaction effects between
damping and brightness show that a sound with high damping attenuates the negative
valence due to high brightness.

Dominance Follow-up univariate analysis revealed main effects of Brightness
F(1.49,13.45) = 6.55,p < 0.05 and Damping F(1.05,10.915) = 4.7,p < 0.05
on Dominance (Figure 3).

A significant mean difference of -0.743 was found between high and low
brightness. The brighter the more dominant.

A significant mean difference of 0.33 was found between medium and low
damping factor. The more damped the less dominant.
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Fig. 12. Effect of timbre parameters (Brightness and Damping) on Dom-
inance. A) Bright sounds are perceived as more dominant than dull sounds B) A
sound with medium damping is perceived as less dominant than low damping.

4 Conclusions

This study validates the use of the SMuSe as an “affective music engine”. The
different levels of musical parameters that were experimentally tested evoked sig-
nificantly different emotional responses. The tendency of minor mode to increase
negative valence and of high register to increase arousal (Figure 5) corroborates
the results of [12,13], and is complemented by interaction effects (Figure 6). The
tendency of short articulation to be more arousing and more negative (Figure
7 and 8) confirms results reported in [14,15,16]. Similarly, higher tempi have a
tendency to increase arousal and decrease valence (Figure 7 and 8) are also re-
ported in [14,15,12,13,17,16]. The present study also indicates that higher tempi
are perceived as more dominant (Figure 9). Musical sequences that were played
louder were found more arousing and more negative (Figure 7 and 8) which is
also reported in[14,15,12,13,17,16], but also more dominant (Figure 9). The fact
that higher brightness tends to evoke more arousing and negative responses (Fig-
ure 10 and 11) has been reported (but in terms of number of harmonics in the
spectrum) in [13]. Additionally, brighter sounds are perceived as more dominant
(Figure 12). Damped sounds are less arousing and dominant (Figure 10 and 12).
Sharp attacks are more arousing and more positive (Figure 10 and 11). Similar
results were also reported by [14]. Additionally, this study revealed interesting
interaction effects between damping and brightness (Figure 10 and 11).

Most of the studies that investigate the determinants of musical emotion use
recordings of musical excerpts as stimuli. In this experiment, we looked at the
effect of a well-controlled set of synthetic stimuli (generated by the SMuSe) on
the listener’s emotional responses. We developed an automated test procedure
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that assessed the correlation between a few parameters of musical structure, ex-
pressivity and timbre with the self-reported emotional state of the participants.
Our results generally corroborated the results of previous meta-analyses [15],
which suggests our synthetic system is able to evoke emotional reactions as well
as “real” musical recordings. One advantage of such a system for experimental
studies though, is that it allows for precise and independent control over the mu-
sical parameter space, which can be difficult to obtain, even from professional
musicians. Moreover with this synthetic approach, we can precisely quantify the
level of the specific musical parameters that led to emotional responses on the
scale of arousal, valence and dominance. These results pave the way for an in-
teractive approach to the study of musical emotion, with potential application
to interactive sound-based therapies. In the future, a similar synthetic approach
could be developed to further investigate the time-varying characteristics of emo-
tional reactions using continuous two-dimensional scales and physiology [18,19].
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Abstract. This work presents a preliminary study of timing synchro-
nization phenomena in string quartet performance. Accurate timing in-
formation extracted from real recordings is used to compare timing de-
viations in solo and ensemble performance when executing a simple mu-
sical passage. Multi-modal data is acquired from real performance and
processed towards obtaining note-level segmentation of recorded perfor-
mances. From such segmentation, a series of timing deviation analyses
are carried out at two different temporal levels, focusing on the explo-
ration of significant differences between solo and ensemble performances.
This paper briefly introduces, via an initial exploratory study, the exper-
imental framework on which further, more complete analyses are to be
carried out with the aim of observing and describing certain synchro-
nization phenomena taking place in ensemble music making.

Keywords: music performance, ensemble performance, synchronization,
timing, tempo, string quartet

1 Introduction

Music performance as the act of interpreting, structuring and physically realizing
a composition is a highly complex human activity with many facets: physical,
acoustic, physiological, psychological, social, artistic, etc. [4]. Trained musicians
are able to read and interpret a composition in the form of a music score, which
may end up conveying very different emotions depending on how it is performed,
i.e., how the content is transformed into musical sound. In fact, it is commonly
acknowledged that there is an important part of expression or meaning already
borne by the actual piece to be performed, and another part introduced by
the performer when freely navigating the space of performance resources (e.g.,
timing deviations, dynamics modulations, etc.) resulting from a combination of
praxis habits and certain constraints imposed by the structure and content of
the score [2]. In the search for exploring and understanding the process of music

* The authors would like to thank collaborators from CIRMMT, McGill University
for their support in hosting the recordings: Carolina Brum, Erika Donald, Vincent
Freour, Marcello Giordano, and Marcelo M. Wanderley.

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
19-22 June 2012, Queen Mary University of London
All rights remain with the authors.
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performance as an accessible instance of human cognition, some researchers of
a variety of disciplines have tried to approach the challenge by looking at mu-
sic performance as a goal-directed task, considering such task as driven by the
sequence of symbolic events appearing in a music score [11].

Ensemble music performance can be regarded as one of the most closely syn-
chronized activities that human beings engage in (actions coordinated to within
small fractions of a second are considered routine even in amateur performance).
Unlike speech, musical performance is one of the few expressive activities allow-
ing simultaneous participation. As such, the potential of music as a basis for
studying basic principles of non-verbal communication and entrainment of emo-
tion is unparalleled [7]. Studies in computational modeling of music performance
have confirmed the widespread consideration of tempo and dynamics as the two
most prominent resources available for musicians to convey emotion or expres-
sion during performance [14] (e.g., by acting with creative freedom to carve
personalized and aesthetically pleasing executions), thus represeting two ma-
jor dimensions over which to extract relevant information from a performance
recording of a certain piece. In agreement with the importance of explicitly con-
sidering metric, melodic and harmonic structures of scores when approaching
the study of music performance from a computational perspective [1], previous
researchers have based their work on pairing musicological charactersitics of mu-
sical scores with performance aspects, especially timing and/or dynamics [3, 13,
15,12]. From these two dimensions, available for ensemble musicians to coordi-
nate and successfully achieve their shared goal, a first clear choice for extracting
synchronization-related information from joint performance is to analyze how
timing modulations get synchronized in different situations (e.g., solo versus en-
semble) and different musical contexts (e.g., by accounting for score structure).

The computational study of timing synchronization among ensemble per-
formers has been approached in the past. A vast literature has been inspired by
the concept of ”participatory discrepancy” introduced in [6] by Keil. Following
the Keil’s directions, an objective measure of performer’s time discrepancies for
several bass players was out carried in [10]. However only a one-way synchro-
nization could be observed since the musicians where recorded playing solo on
top of a recorded tape. More interaction paradigms were considered in the work
by Goebl and Palmer [5], where the focus was put onto exploring the influence
of auditory feedback and musical role (e.g., leadership) on timing (note onsets)
and motion (finger and head) synchronization phenomena among duets of pi-
anists. A second relevant example of two-ways auditory/visual feedback is the
work by Moore and Chen [9], which pursued micro-timing analyses from arm
motion data acquired from two members of a string quartet while performing a
relatively difficult, yet thoroughly rehearsed task. Findings of both works showed
timing and/or motion synchronization as an essential cue for the exploration of
basic social behaviors in coordinated action.

In this paper, we present a preliminary study of timing synchronization phe-
nomena among the four members of string quartet during performance. Tim-
ing information is extracted by processing multi-modal data acquired from real
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recording (providing a note-level score-performance alignment) of the execution
of a simple musical passage that was unknown to the musicians. From annotated
note onsets and offsets, a number of timing deviation analyses are carried out
at two different temporal levels, focusing on the exploration of significant dif-
ferences between solo and ensemble performances. Rather than with the aim of
presenting a thorough study on the topic, this paper discusses an initial explo-
ration experiment while introducing the framework and methods through which
more complete and extended analyses are to be systematically carried out on a
large corpus of quartet performance recordings being constructed at the moment.

The rest of the paper is structured as follows. Sec. 2 briefly introduces the
general approach we envisioned and employed and explains what type of data
we acquire from each experiment and summarizes the techniques used for pre-
processing it. We then present some preliminary results on tempo in Sec. 3 and,
finally, discuss them in Sec. 4.

2 Experimental framework

As verified by the above literature, the subject of collaborative musical perfor-
mance is a very complex one. In order to obtain reliable results using compu-
tational means, the existence of valid hypotheses is of very high value; for that
reason, we are working on an experimental framework which will provide a set
of recordings where the studied relationships among the musicians are well de-
fined and unambiguous. The final corpus of music pieces used, which will be
detailed next, has been selected and modified using the help of a professional
string quartet performer, and will in time be recorded by a number of different
quartets.

The corpus is based on an exercise handbook for string quartets?, intended
for improving the “ensemble skills” of the quartet members. The material is
divided into six categories, with each category containing a number of short
exercises dealing with a different aspect of ensemble performance: Intonation,
Dynamics, Unity of Execution, Rhythm, Phrasing, and Tone production/Timbre.
An exercise consists of a simple, low difficulty score, together with annotations
on what is the specific goal that must be achieved by the quartet.

We record the musicians’ performance in three experimental conditions; solo
(first sight), rehearsal, and ensemble. In the first condition (solo), each musi-
cian must perform their part alone without having access to the full ensemble
score nor the instructions that accompany the exercise. In this way we wish to
eliminate any type of external influence on the performance, be it restrictions
imposed by other voices of the ensemble or instructions by the composer that are
not in relation to the individual score of the performer. In the second condition
(rehearsal) , following the solo recordings of each quartet member, the group
of musicians is provided with the full ensemble score plus the composer instruc-
tions; they are then left to rehearse the exercise alone until they are able to fulfill

3 Mogens Heimann - Exercises for the String Quartet.
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the requirements of the exercise. In the third condition (ensemble), following the
rehearsal, the quartet is finally recorded performing the exercise as a group.

In terms of data acquisition, both audio and motion capture data are recorded
for each member of the ensemble; these data streams are synchronized in real
time. Audio-wise, the individual signal from each musician is captured through
the use of piezoelectric pickups attached to the bridge of the instrument. Instru-
mental - i.e. sound-producing - gestures such as bow velocity and force are also
acquired through the use of a motion capture system, as detailed in [8].

For every recording a semi-automatic, note-level alignment between the per-
formance and the music score is performed using a dynamic programming ap-
proach, a variation of the well-known Viterbi algorithm. This approach focuses
into three main regions of each note: the note body and two transition segments
(onset and offset). Different costs are computed for each segment, using features
extracted by the audio (RMS audio energy, Fundamental frequency) as well as
the bowing features described above. Finally, the optimal note segmentation is
obtained so that a total cost (computed as the sum of the costs corresponding
to the complete sequence of note segments) is minimized. This method, which
can be seen in more detail in [8], has so far provided robust results that only in
few occasions require manual correction. Through this alignment, it is then easy
and accurate to extract detailed timing information for each performer. More
complicated information such as the dynamics, timbre or articulation of the
performance is extracted by combining the audio signal with the instrumental
gesture features.

3 Preliminary study and initial results

The objective of the study presented here is to exploit content of some prelimi-
nary experiments and formulate new hypothesis to be tested in the next set of
experiments. In this article we deal with some results arising from the experi-
ment conducted with the exercise shown in Fig. 1. The exercise consists of an
ascending and descending D major scale in thirds. The quartet is divided in two
sections (violins in the first, viola and cello in the second) one alternating with
the other. Musicians were instructed to play the score as if it was played by one
instrument. We did not impose on them further constraints such as to follow a
metronome.

For each case we recorded 4 consecutive repetition of the score (Fig. 1).
A score alignment has been executed on each of those 8 performances. The
analyzed set of data thus consists of 512 aligned onsets (64 per performance).
We also derived a joint-performance alignment consisting of 128 onsets where
for each third chord we compute an onset given by the mean of the individual
attacks of the two notes that form that chord. The goal of this exercise is self-
evident in the score. The notes within each group have to blend together while
allowing the blocks of semiquaver notes formed by each group to slot together in
a temporal order. In addition to that, the requirement of achieving a good “unity
of execution” means that the parts played by each group have to be connected
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Fig. 1. Score of the exercise employed for the experiment.

to the part of the subsequent section without disruptions in terms of tempo and
dynamics. It is also worth to notice that the slurs contained in the scores, by
requiring the musicians perform with a certain bow direction might also pose
some constraints to the synchronization process.

We divided results of the analysis into Micro- and Macro- tempo results. We
consider Macro-tempo as the tempo experienced by a listener in a relatively
long region of time, it can also change in time but rather slowly. Micro-Tempo
comprises of slight anticipations of note events followed by a deferral of the
subsequent events in a way that the result does not contribute to macro-tempo
changes.

3.1 Macro-tempo

By assuming, for a moment, the tempo to be constant when no onset occurs
we derive a bpm step function defined to be the corresponding beat per minute
value of each duration. This curve is noisy due to the differences in duration
of the notes. In order to remove high frequency content and derive an overall
tempo behavior we convolve it with a gaussian curve of variance ¢ > 0. From

Solo Ensemble Joint Ensemble
SLOFTTT T AT T[T

Violinl

80.5
Violin2

80.0
—- — Viola 795

{ — — Cello 790

Fig. 2. Individual tempo curve of the four instruments for the solo (left) and the
ensemble case (center). Vertical grid lines mark the boundaries of the repetitions (full
line) and the beat start time (dashed line).The tempo curve of the joint ensemble
performance is shown on the last plot (right).

the tempo curves derived for the solo/ensemble case we find that not only the
mean tempo of the four musicians becomes the same, but also the variance of
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the tempo curve gets significantly smaller in the ensemble case. We can interpret
this result both as an indicator that the freedom of the musicians gets restricted
and as a result of the collaborative way in which the tempo is jointly shaped.
Fig. 2 shows tempo derived with o = 1.67 for the solo/ensemble case. As it is
clear from the plots, the individual tempo curves contract to the same tempo
when the musicians play together.
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Fig. 3. Box-and-whisker diagrams showing some results in micro-tempo.

In the solo excerpts we found a relationship between the alternation of pauses
and semiquavers of each single voice and the corresponding duration of the beat.
The tempo was kept differently by the musicians in the case of a pause then in
the case of semiquavers. Also in this case we found differences from the ensemble
recordings case where the discrepancy between pause and semiquaver duration
gets smaller because of the interdependence among musicians. The results of this
analysis are shown in Fig. 3(a) by box-and-whisker diagrams. A t-test shows a
significant difference between pauses and semiquavers duration in the cases of
solo violin 1 and solo viola. In the ensemble case only the viola is found to
play pauses consistently shorter than semiquavers although the difference was
small. Regarding the variances, a y2-test at a significance level of 5% could find
disjoint confidence intervals only for the first violin in the solo and the cello in
the ensemble. In the remaining cases the amount of variation in duration across
the pauses did not differ from the one of the notes.

Fig. 3.1 shows the same tempo analysis for the joint ensemble performance.
The most evident feature of this tempo curve is its relationship with the repeti-

4 The difference between the mean duration of the four notes groups and that of
the pauses was just 47 ms. This does not necessarily mean that the viola was not
synchronized with the rest but it might mean that he was slightly anticipating the
the others’ first note onset and/or deferring the last note offset in the group of notes.
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tion structure of the exercise. In fact, while remaining relatively constant (just
slightly increasing through the performance) the performance tempo was indeed
oscillating by speeding up in the center of the repetition and slowing down to-
wards its boundaries. In table 3.1 the correlation with the pitch curve® is shown
for all the cases. In the joint ensemble performance the correlation is 0.56. This
confirms the overall tendency of the performance to speed up at higher pitches®.
Despite the fact that we only have recoded few repetitions, this value of corre-
lation is highly improbable to arise by chance. To quantify the significance we
have used an empirical (Monte-Carlo) method. We generated sample random
performances by perturbing in different ways the score with a gaussian noise
to each note onset time. For each random performance we have performed the
same macro-tempo analysis as the one performed on the real performance. Five
groups of 2000 random performances were generated of respectively standard
deviations 0.1, 2.5, 5, 10 and 25 ms. We then yield a value of pitch correlation
for the tempo curve produced by each perturbed score and estimate variance and
mean of the correlation. Assuming it to be a gaussian distribution we obtain an
empirical p-value’ for each noise amplitude. The resulting p-values are shown
in Fig. 5 and, as you can see, the p-value is bounded by 2.5%. Remarkably, an
increase of error variance o2 yields a decrease of p-values and not the other way
around. Thus, it is even less likely to get a big correlation by adding a bigger
noise than by adding a small one. In conclusion a confidence level of 98% can be
considered to hold in all cases.

We have to notice that the excursion of the tempo curve is smaller than the
just-noticeable-difference (JND). This means that the musicians are not aware
of this fluctuations of tempo. Moreover, we can not still distinguish if this mech-
anism is directly related to repetition structure, pitch or to some more complex
unconscious mechanism governing the performance.

Solo Ensemble|Joint Ensemble - i:g
Corr| Cov |Corr|Cov| Corr | Cov g 15
Violin 1]-0.54]-33.65[0.59|2.87 i ;-go%xy\ 9
Violin 2[ 0.5 | 85 [0.75[3.34] . 578 oﬁoo TR
Viola |0.05| 0.92 [0.59(3.01| - ‘ .
Cello |0.72| 6.1 [0.35(1.01

Fig.5. p-value for different
Fig. 4. Correlation of pitCh with joint variances of gaussjan noise for

ensemble tempo curve. the empirical significance test.

5 The pitch curve has values in number of semitones and has been constructed by
taking the higher pitched note of each chord

5 This is predicted by the well-known phrase-arch rule of Friberg et al. It is thus
probably unrelated to pitch, and occurs only because the high pitches are in the
middle of the phrase. However the performance we are analyzing here, far from
being expressive, is just an exercise scale.

" The empirical probability of having a correlation as high as the one measured for
the real performance (0.56).
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3.2 Micro-tempo

Whereas macro-tempo can be related to global properties of the performance
such as phrases or repetition patterns, micro-tempo is usually related to inci-
dental local characteristics of the score.

At a shorter micro tempo scale, we found a consistent relation between the
duration of each semiquaver and the position it occupies within groups of 4
semiquavers. An ANOVA test could confirm at a significance level lower than
1% the effect of metrical position on the joint-performance.

Differences have been found also when comparing the solo performance with
the ensemble performance. Since the general tendency is to play the first note of
the group longer than the second we have focused, for the sake of simplicity, on
the ratio between the duration of the first semiquaver duration and the second
(SQDR). This simplification also enables us to compare the solo case with the
ensemble case since the ratio is not directly dependent on tempo. Remarkably, we
could prove at a significance level lower than 2% the effect of the two scenarios
to the SQDR for first Violin, Viola and Cello. We can thus report an overall
tendency to exaggerate the agogic accent of consecutive strong-weak semiquaver
couples in the ensemble case respect to the solo. Whereas the second violin keeps
maintaining a positive SQDR, of 1.19 in both the cases, the first violinist and the
cello increase theirs from 1.07 to 1.27 and from 1.0 to 1.24 respectively. Despite
this general tendency, a different behavior was measured for the viola which was
decreasing its SQDR from 1.29 to 1.02.

A further analysis of the precedence of the onset times seems to explain the
different micro-tempo results of the musicians in the ensemble case. Analyzing
the attack time of the musicians having synchronized notes we found out that
the attacks of the cello were preceding the ones of the viola by a mean of 8 ms,
and the first violin was preceding the second by 13 ms. Musicians employing
an higher SQDR are thus also anticipating their partner on the average. This
suggest that the use of contrast in successive notes could be used as a mean of
communication between the musicians to better control the synchronization.

4 Discussion and future work

We have presented an experimental framework through which we assign the
musicians of a string quartet the task of playing specifically chosen exercises
after a brief rehearsal period. In this context we have shown a set of preliminary
results on timing synchronization phenomena observing the differences between
musicians playing alone or in ensemble.

In the macro-tempo and at the beat level we have observed broad reduction
of the mean bpm and its total variation in each single instrument. This confirms
the hypothesis that the constraints that musicians are required to follow end in
favoring a more controlled execution. In the joint ensemble performance we have
then detected a consistent correlation of the bpm with the phrase structure of
the repetition. Despite the fact that the excursion was here within the JND for
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tempo changes we have shown that this behavior is unlikely to happen by chance.
However, more experiments should be carried out to check if this behavior arises
because of the repetition structure, because of the pitch contour or for more
complex reasons.

The analysis micro-tempo, on the other hand, was pointing out generally a
bigger variance between short contiguous notes in the ensemble than in the solo.
By also looking at the precedence of onset attack time between musicians we
have formulated the hypothesis that a bigger contrast between contiguous short
note duration might be used by leaders to maximize the communication with
the other musicians or improve the synchronization. This hypothesis should be
taken into account systematically to design further experiments.
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Abstract. Music exists primarily as a medium for the expression of
emotions, but quantifying such emotional content empirically proves a
very difficult task. Myriad features comprise emotion, and as such mu-
sic theory provides no rigorous foundation for analysis (e.g. key, mode,
tempo, harmony, timbre, and loudness all play some roll), and the weight
of individual musical features may vary due to the expressiveness of dif-
ferent performers. In previous work, we have shown that the ambiguities
of emotions make the determination of a single, unequivocal response
label for the mood of a piece of music unrealistic, and we have instead
chosen to model human response labels to music in the arousal-valence
(A-V) representation of affect as a stochastic distribution. Using multi-
track sources, we seek to better understand these distributions by ana-
lyzing our content at the performer level for different instruments, thus
allowing the use of instrument-level features and the ability to isolate af-
fect as a result of different performers. Following from the time-varying
nature of music, we analyze 30-second clips on one-second intervals, in-
vestigating several regression techniques for the automatic parameteriza-
tion of emotion-space distributions from acoustic data. We compare the
results of the individual instruments to the predictions from the entire
instrument mixture as well as ensemble methods used to combine the
individual regressors from the separate instruments.

Keywords: emotion, mood, machine learning, regression, music, multi-
track

1 Introduction

There has been a growing interest in the music information retrieval (Music-IR)
research community gravitating towards methods to model and predict musical
emotion using both content based and semantic methods [1]. It is natural for
humans to organize music in terms of emotional associations, and the recent ex-
plosion of vast and easily accessible music libraries has created high demand for
automated tools for cataloging, classifying and exploring large volumes of mu-
sic content. Crowdsourcing methods provide very promising results, but do not
perform well outside of music that is highly-popular, and therefore leave much
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to be desired given the long-tailed distribution of music popularity. The recent
surge of investigations applying content-based methods to model and predict
emotional affect have generally focused on combining several feature domains
(e.g. loudness, timbre, harmony, rhythm), in some cases as many as possible,
and performing dimensionality reduction techniques such as principal compo-
nent analysis (PCA). While using these methods may in many cases provide
enhanced classification performance, they provide little help in understanding
the contribution of these features to musical emotion.

In this paper, we employ multi-track sources for music emotion recognition,
allowing us to extract instrument-level acoustic features while avoiding corrup-
tion that would usually occur as a result of noise induced by the other instru-
ments. The perceptual nature of musical emotion necessarily requires supervised
machine learning, and we therefore collect time-varying ground truth data for
all of our multi-track files. As in previous work, we collect data via a Mechani-
cal Turk human intelligence task (HIT) where participants are paid to provide
time-varying annotations in arousal-valence (A-V) model of affect, where valence
indicates positive vs negative emotion, and arousal indicates emotional intensity
[2]. In this initial investigation we obtain these annotations on our full multi-
track audio files, thus framing the task as predicting the mixed emotion from the
individual instrument sources. Furthermore, we model our collected A-V data
for each moment in a song as a stochastic distribution, and find that the labels
can be well represented as a two-dimensional A-V Gaussian distribution.

In isolating specific instruments we gain the ability to extract specific acous-
tic features targeted at each instrument, allowing us to find the most informa-
tive domain for each. In addition, we also isolate specific performers, potentially
allowing us to take into account performer-level affect as a result of musical ex-
pression. We build upon our previous work modeling time-varying emotion-space
distributions, and seek to develop new models to best combine this multi-track
data [3-5]. We investigate multiple methods for automatically parameterizing an
A-V Gaussian distribution, effectively creating functional mappings from acous-
tic features directly to emotion space distribution parameters.

2 Background

Prior work in modeling musical emotion has explored content based and semantic
methods as well as combinations of both models [1]. Much of the work in content
based methods focuses on training supervised machine learning models to predict
classes of emotion, such as happy, joyful, sad or depressed. Several works also
attempt to classify songs into discretized regions of the arousal-valence mood
space [6-8].

In addition to classification, several authors have successfully applied regres-
sion methods to project from high dimensional acoustic feature vectors directly
into the two dimensional A-V space [9,8]. To our knowledge, no one has at-
tempted to leverage the separate audio streams available in multi-track record-
ings to enhance emotion prediction using content based methods.
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3 Dataset

We selected 50 songs spanning 50 unique artists from the RockBand® game and
created five monaural stem files for each song. This is the same dataset (plus 2
additional songs) that we used in a previous paper for performing analyses on
multi-track data[10,11]. A stem may contain one or more instruments from a
single instrument class. For example, the vocal track may have one lead voice
or a lead and harmony or even several harmonies as well as doubles of those
harmonies. Each stem only contains one instrument class (i.e. bass, drums, vo-
cals) excepting the backup track which can contain audio from more than one
instrument class. For each song there are a total of six audio files - backup,
bass, drums, guitar, vocals and the full mix, which is a linear combination of the
individual instruments.

To label the data, we employed an annotation process based on the
MoodSwings game outlined in [2]. We used Amazon’s Mechanical Turk and
rejected the data of users who did not pass the verification criteria of consistent
labeling on the same song and similarity to expert annotations. For the 50 songs
in our corpus there is an average of 18.48 &+ 3.05 labels for each second with a
maximum of 25 and a minimum of 12. A 40 second clip was selected for each
song and the data of the first 10 seconds was discarded due to the time it takes a
user to decide on the emotional content of the song [12]. As a result, we are using
30 second clips for our time varying prediction of musical emotion distributions.

4 Experiments

The experiments we perform are similar in scope to those presented in a previous
paper which utilized a different dataset [4]. This allows us to verify that we
attain comparable results using instrument mixtures and provides a baseline to
compare the results from the audio content of individual instruments.

4.1 Overview

Acoustic features are extracted from each of the five individual instrument files
as well as the final mix and are described in more detail in Section 4.2. We use
linear regression to calculate the projection from the feature domain of each
track to the parameters of the Gaussian distribution that models the labels at
a given time.

7O FOTW, = [0 0 8 5 50 )

Here | 1(t) - ft(t)] are the acoustic features, W; is the projection matrix, p, and

1, are the means of the arousal and valence dimensions, respectively, and 3 is
the 2 x 2 covariance matrix. For an unknown song, W, is used to predict the dis-
tribution parameters in the A-V space from the features for track ¢. The regressor
for each track can be used on its own to predict A-V means and covariances.
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Fig. 1: Acoustic features are computed on each individual instrument file and a
regression matrix is computed to project from features to a distribution in the
A-V space. A different distribution is computed for each instrument (B/D/P/V)
and the mean of the distribution parameters (gray circle) is used as the final
A-V distribution.

We also investigate combinations of the individual regressors to reduce the error
produced by a single instrument model. In these cases, the final prediction is a
weighted combination of the predictions from each individual regressor

K
9 = Z?TKQK (2)
k=1

where 0 = [uy pa 211 X12 o] and 7y is the mixture coefficient for each re-
gressor. In this paper, we try the simplest case which averages the predicted
distribution parameters to produce the final distribution parameter vector. Fig-
ure 1 depicts the test process for an unknown song.

Having a small dataset of only 50 songs, we perform leave-one-out cross
validation (LOOCYV), training on 49 songs and testing on the remaining song.
This process is repeated until every song has been used as a test song.

4.2 Acoustic Features

We investigate the performance of a variety of acoustic features that are typ-
ically used throughout the music information retrieval (Music-IR) community
including MFCCs, chroma, spectrum statistics and spectral contrast features.
The audio files are down-sampled to 22050 Hz and the features are aggregated
over one second windows to align with the second by second labels attained from
the annotation task. Table 1 lists the features used in our experiments [13-16].
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Feature Description
MFCC Mel-Frequency Cepstral Coefficients (20 dimensions)
Chroma Autocorrelation The autocorrelation of the
12 dimensional chroma vector
Spectral Contrast Energy in spectral peaks and valleys

Statistical Spectrum Descriptors Statistics of the spectrum (spectral shape)

Table 1: Acoustic features used in the experiments.

5 Results

We perform experiments using the audio of individual instruments, the full in-
strument mixture and combinations of the individual instruments. We also com-
pare the results of using different features for each track.

Table 2 shows the results for the regressors trained on individual instruments.
The mean average error is the average euclidean distance of the predicted mean
of the distribution from the true mean of the distribution across all cross vali-
dation folds. Since we are modeling distributions and not just singular A-V co-
ordinates, we also compute the one-way Kullback-Liebler (KL) Divergence from
the projected distribution to the true distribution of the collected A-V labels.
The table shows the average KL divergence for each regressor averaged across
all cross validation folds. We observe that the best regressor for bass, drums and
vocals is attained using spectral contrast features and the best regressor for the
backup and drum tracks is computed using spectral shape features. It is notable
that chroma features perform particularly poor in terms of KL divergence but
are only slightly worse than the other features at predicting the means of the
distribution.

We also consider combinations of regressors which are detailed in Table 3.
The ‘Best Single’ row shows the best performing single regressor in terms of A-V
mean prediction using each feature. The second row in the table includes the
results of averaging the predicted distribution parameters for all five individual
instrument models for the given feature. Lastly, ‘Final Mix’ lists the average
distance between the predicted and true A-V mean when projecting from features
computed on the final mixed track. We note that averaging the models improves
performance for all of the best single models excepting the spectral contrast
feature. Comparing the averaged models to the prediction from the final mix,
the averaged single instrument regressors perform better for MFCCs and spectral
shape features but do not perform as well as the final mixes when using chroma
or spectral contrast features.

In Figure 2 we see examples of both the predicted and actual distributions for
a 30 second clip from the song Hysteria by Muse. Both the true and estimated
distributions get darker over time as do the data points of the individual users.
The predictions for the individual instruments (a-e) are shown along with the
average of the predictions for all the instruments (f).
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Feature Instrument Average Mean Average KL
Distance Divergence
Backup 0.152 +0.083 1.89 +2.34
Bass 0.141 £0.070 1.26 +£1.29
MFCC |Drums 0.140 £0.075 1.17+£1.52
Guitar 0.133 £+ 0.066 1.22+1.40
Vocals 0.134 £0.071 1.41+1.81
Backup 0.145 +£0.125 1.86 +5.93
Bass 0.140 £0.076 1.21 +1.38
Spectral |Drums 0.139 £0.071 1.20+1.88
Contrast |Guitar 0.125+0.063 1.06 +1.42
Vocals 0.129 £0.065 1.00+1.32
Backup 0.1324+0.068 1.25+1.91
Bass 0.142 £ 0.071 1.31+£1.63
Spectral |Drums 0.131 +£0.072 1.03+1.38
Shape |Guitar 0.134 £ 0.063 1.12+1.42
Vocals 0.133 £ 0.067 1.12+1.47
Backup 0.153 +£0.084 10.85 £ 15.6
Bass 0.159 £+ 0.084 5.35+6.13
Chroma |Drums 0.162 £ 0.089 2.87+£3.01
Guitar 0.147 £ 0.074 2.66 +4.33
Vocals 0.154 +£0.078 5.994+104

Table 2: Mean average error between actual and predicted means in the A-V
coordinate space as well as Kullback-Leibler (KL) divergence between actual
and predicted distributions. The value of the best performing feature for each
instrument is in bold.

6 Discussion

In this initial work we demonstrate the potential of utilizing multi-track repre-
sentations of songs for modeling and predicting time varying musical emotion
distributions. We achieved performance on par with what we have shown pre-
viously with a different corpus using similar techniques and a simple averaging
of a set of regressors trained on individual instruments. Using more advanced
techniques to determine the optimal combinations and weights of instruments
and features could provide significant performance gains compared to averaging
the output of all the models. There are a variety of ensemble methods for regres-

Features
Chroma Contrast MFCC Shape
Best Single 0.147 £0.074 0.125+0.063 0.1334+0.066  0.131 +0.072

0.126 £0.066 0.124 +0.061 0.129 £ 0.064
0.132 £ 0.066

Avg Models
Final Mix

0.142 £ 0.075
0.141 +£0.073 0.124+0.066 0.129 £ 0.069

Table 3: Results from different combinations of single instrument regressors
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(d) Drums (e) Vocal (f) Averaged Prediction

Fig.2: Actual (red) and predicted (green) distributions for Hysteria by Muse.
The color of the distribution gets darker over time as does the color of the
individual data points.

sion that would be applicable to learning better feature and model combinations
for regression in the A-V space. We hope to infer, from the results of such ex-
periments, whether certain instruments contribute more to invoking emotional
responses from humans.

The results shown in these experiments are encouraging, especially in the
performance gains in the case of the MFCC features. An interesting result is
that each individual instrument spectral contrast prediction performs better
than that of MFCCs, but the MFCC multi-track combination is the top per-
former equal with spectral contrast on the full mix. This result highlights that
the highest performing feature on a single track might not be the same one that
offers the most new information to the aggregate track prediction. As a result,
in future work we plan to investigate feature selection for this application, per-
forming a number of experiments with different acoustic feature combinations
to determine the best acoustic feature for each instrument in the multi-track
prediction system.
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Abstract. An important issue in vector quantization (VQ) is the design of the
codebook. The standard method for codebook design has been the generalized
Lloyd algorithm (GLA) and Lind, Buzo and Gray (LBG) algorithm. Theses al-
gorithms can get stuck in suboptimal codebooks due to the presence of several
locally minimum distortion values. Simulated annealing (SA) is an optimization
procedure that uses randomness to escape local minima in its search for a glob-
ally minimum state. In this paper, we propose a method of applying simulated
annealing to VQ codebook design problem. The results presented for speech
samples represented by line spectrum Pairs (LSP) indicate that the resulting de-
sign with simulated annealing are better compared to GLA and LBG algo-
rithms.

Keywords: LSP, Simulated Annealing, GLA, LBG, MSE, SNR

1 Introduction

VQ has become a powerful tool and its application has been frequently reported in the
speech and image coding literature [1-3]. The basic definition of a vector quantizer O

of dimension »n and size K is a mapping of a vector from 7 -dimensional Euclidean

space, R" to a finite set, C, containing K reproduction code-vectors [1]:
QO:R" ->C, €))

where C= {y[ iiel } and y; € R" [1]. Associated with each reproduction code-
vector is a partition of R”, called a region or cell, S = {Sl» el } [4]. The most popu-

lar form of VQ is the nearest neighbor VQ, where for each input source vector, x, a
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search is done through the entire codebook to find the nearest code-vector, y;, which
has the minimum distance [5]:

i =0(x) )
ifd(x,y;)<dlx,y;) for i#j 3)

where d(x, y) is a distance measure between the vectors, x and y. The mean

squared error (mse) is used as the distance measure. Depending on the coding applica-
tion, other more meaningful distance measures may be used such as the the
Mabhalanobis distance [6], Itakura—Saito distance [7], or other perceptually-weighted
distance measures [8].

If the dimension of the vectors is » and a codebook of K code-vectors is used,
each vector will be represented as a binary code of length [log2 K] bits. Hence the

bitrate of the vector quantizer is given by 1 [log2 K ] bits/sample [5].
n

Codebook design is the key problem of VQ and the generated codebook has more
effect on the compression performance. The most widely used technique to create
codebooks is a generalized Lloyd algorithm (GLA)[9], which is an iterative descent
technique where an initial codebook is continually refined so that each iteration re-
duces the distortion involved in coding a given training set. The GLA algorithm pro-
vides no guarantee of optimality; a locally optimal solution may be obtained. The
Linde-Buzo—Gray (LBG) algorithm [10] is an extension of the iterative Lloyd method
[9], for use in VQ design. Because the LBG algorithm is not a variational technique,
it can be used for cases where: the probability distribution of the data is not known a
priori; we are only given a large set of training vectors; and the source is assumed to
be ergodic [10]. The LBG algorithm involves refining an initial set of reproduction
code-vectors using the Lloyd conditions [11], based on the given training vectors. The
iterative procedure is stopped after the change in distortion becomes negligible.

Research efforts in codebook design have been concentrated in two directions: to
generate a better codebook that approaches the global optimal solution, and to reduce
the computational complexity.

All of the above algorithms have a local minimum problem. That is, the codebo