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Abstract. The prominent status of music in human culture and every
day life is due in large part to its striking ability to elicit emotions, which
may manifest from slight variation in mood to changes in our physical
condition and actions. In this paper, we first review state of the art stud-
ies on music and emotions from different disciplines including psychology,
musicology and music information retrieval. Based on these studies, we
then propose new insights to enhance automated music emotion recog-
nition models.
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1 Introduction

Since the first empirical works on the relationships between music and emotions
[20] [37], a large body of research studies has given strong evidence towards
the fact that music can either (i) elicit/induce/evoke emotions in listeners (felt
emotions), or (ii) express/suggest emotions to listeners (perceived emotions), de-
pending on the context [56]. As pointed out by Krumhansl [26], the distinction
between felt and perceived emotions is important both from the theoretical and
methodological point of views since the underlying models of representations
may differ [71]. One may argue about the fact that music can communicate and
trigger emotions in listeners and this has been the subject of numerous debates
[37]. However a straightforward demonstration of the latter doe not require a
controlled laboratory setting and may be conducted in a common situation, at
least in certain cultures, that of watching/listening movies with accompanying
soundtracks. In the documentary on film score composer Bernard Hermann [61],
the motion picture editor Paul Hirsch (e.g. Star Wars, Carrie) discusses the ef-
fect of music in a scene from Alfred Hitchcock’s well-known thriller/horror movie
Psycho, whose soundtrack was composed by Hermann: “The scene consisted of
three very simple shots, there was a close up of her [Janet Lee] driving, there was
a point of view of the road in front of her and there was a point of view of the
police car behind her that was reflected in the rear mirror. The material was so
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simple and yet the scene was absolutely gripping. And I reached over and I turned
off the sound to the television set and I realised that the extreme emotional duress
I was experiencing was due almost entirely to the music.”. With regard to music
retrieval, several studies on music information needs and user behaviors have
stimulated interest in developing models for the automatic classification of mu-
sic pieces according to the emotions or mood they suggest. In [28], the responses
of 427 participants to the question “When you search for music or music infor-
mation, how likely are you to use the following search/browse options?” showed
that emotional/mood states would be used in every third song query, should they
be possible. The importance of musical mood metadata was further confirmed
in the investigations by Lesaffre et al. [30] which give high importance to affec-
tive/emotive descriptors, and indicate that users enjoy discovering new music by
entering mood-based queries, as well as those by Bischoff et al. [5] which showed
that 15% of the song queries on the web music service Last.fm were made us-
ing mood tags. As part of our project Making Musical Mood Metadata (M4) in
partnership with the BBC and I Like Music, the present study aims to (i) review
the current trends in music emotion recognition (MER), and (ii) provide insights
to improve MER models. The remainder of this article is organised as follows. In
Section 2, we present the three main types of (music) emotion representations
(categorical, dimensional and appraisal). In Section 3, we review MER studies
by focusing on those published between 2009 and 2011, and discuss the current
trends in terms of features and feature selection frameworks. Section 4 presents
state-of-the-art’s machine learning techniques for MER. In Section 5, we discuss
some of the findings in MER and conclude by highlighting the main implications
to improve content and context-based MER models.

2 Representation of Emotions

2.1 Categorical Model

Table 1 presents the main categorical and dimensional emotion models used in
the MER studies reviewed in this article. According to the categorial approach,
emotions can be represented as a set of categories that are distinct from each
others. Ekman’s categorical emotion theory [13] introduced basic or universal
emotions that are expected to have prototypical facial expressions and emotion-
specific physiological signatures. The seminal work from Hevner [21] highlighted
(i) the bipolar nature of music emotions (e.g. happy/sad), (ii) a possible way
of representing them spatially across a circle, as well as (iii) the multi-class and
multi-label nature of music emotion classification. Schubert proposed a new tax-
onomy, the updated Hevner model (UHM) [54], which refined the set of adjectives
proposed by Hevner, based on a survey conducted by 133 musically experienced
participants. Based on Hevner’s list, Russell’s circumplex of emotion [44], and
Whissell’s dictionary of affect [65], the UHM consists in 46 words grouped into
nine clusters.

Bischoff et al. [6] and Wang et al. [63] proposed categorical emotion models
by dividing the Thayer-Russell Arousal/Valence space (see Section 2.2) into into
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Table 1. Categorical and dimensional models of music emotions used in MER. Cat.:
Categorical; Dim.: Dimensional; Ref.: References.

Notation Description Approach Ref.

UHM9 Update of Hevner’s adjective Model (UHM) including nine categories Cat. [54]

AMC5C 5 MIREX audio mood classification (AMC) clusters (“Passion-
ate”,“Rollicking”, “Literate”, “Humorous”, “Aggressive”)

Cat. [22] [9] [6]
[58] [62]

5BE 5 basic emotions (“Happy”, “Sad”, “Tender”, “Scary”, “Angry”) Cat. [12] [45]

AV4Q 4 quadrants of the Thayer-Russell AV space (“Exuberance”, “Anx-
ious/Frantic”, “Depression”, “Contentment”)

Cat. [6] [63]

AV11C 11 subdivisions of the Thayer-Russell AV space (“Pleased”, “Happy”,
“Excited”, “Angry”, “Nervous”, “Bored”, “Sad”, “Sleepy”, “Peaceful”,
“Relaxed”, and “Calm”)

Cat. [19]

AMG12C 12 clusters based on AMG tags Cat. [33]

72TCAL500 72 tags from the CAL-500 dataset (genres, instruments, emotions, etc.) Cat. [4]

AV4Q-UHM9 Categorisation of UHM9 in Thayer-Russell’s quadrants (AV4Q) Cat. [40]

AV8C 8 subdivisions of the Thayer-Russell AV space Cat. [24]

4BE 4 basic emotions (“Happy”, “Sad”, “Angry”, “Fearful”) Cat. [59]

4BE-AV 4 basic emotions based on the AV space (“Happy”, “Sad”, “Angry”,
“Relaxing”)

Cat. [63]

9AD Nine affective dimensions from Asmus (“Evil”, “Sensual”, “Potency”,
“Humor”, “Pastoral”, “Longing”, “Depression”, “Sedative”, and “Ac-
tivity”)

Dim. [2]

AV Arousal/Valence (Thayer-Russell model) Dim. [19]

EPA Evaluation, potency, and activity (Osgood model) Dim.

6D-EPA 6 dim. correlated with the EPA model Dim. [35]

AVT Arousal, valence, and tension Dim. [12]

four quadrants (AV4Q). [19] proposed subdivisions of the four AV space quad-
rants into a larger set, composed of 11 categories (AV11C). Their model, assessed
on a prototypical database, led to high MER performance (see Section 3). [22]
and [33] proposed mood taxonomies based on the (semi-)automatic analysis of
mood tags with clustering techniques. [22] applied an agglomerative hierarchi-
cal clustering procedure (Ward’s criterion) on similarity data between mood
labels mined from the AllMusicGuide.com (AMG) website presenting annota-
tions made by professional editors. The procedure generated a set of five clusters
which further served as a mood representation model (denoted AMC5C, here) in
the MIREX audio mood classification task and has been widely used since (e.g.
in [22], [9], [6], and [62]). In this model, the similarity between emotion labels is
computed from the frequency of their co-occurence in the dataset. Consequently
some of the mood tag clusters may comprise tags which suggest different emo-
tions. Training MER models on these clusters may be misleading for inference
systems, as shown in [6] where prominent confusion patterns between clusters
are reported (between Clusters 1 and 2, as well as between Clusters 4 and 3).
[24] proposed a new categorical model by collecting 4460 mood tags and AV
values from 10 music clip annotators and by further grouping them relying on
unsupervised classification techniques. The collected mood tags were processed
to get rid of synonymous and ambiguous terms. Based on the frequency distri-
bution of the 115 remaining mood tags, the 32 most frequently used tags were
retained. The AV values associated with the tags were processed using K-means
clustering which led to a configuration of eight clusters (AV8C). The results
show that some regions can be identified by the same representative mood tags
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as in previous models, but that some of the mood tags present overlap between
regions. Categorical approaches have been criticized for their restrictions due to
the discretization of the problem into a set of “families” or “landmarks” [39]
[8], which prevent to consider emotions which differ from these landmarks. How-
ever, as highlighted in the introduction, for music retrieval applications based
on language queries, such landmarks (keywords/tags) have shown to be useful.

2.2 Dimensional Model

In contrast to categorical emotion models, dimensional models characterise emo-
tions based on a small number of dimensions intended to correspond to the inter-
nal human representation of emotions. The psychologist Osgood [41] devised a
technique for measuring the connotative meaning of concepts, called the semantic
differential technique (SDT). Experiments were conducted with 200 undergrad-
uate students who were asked to rate 20 concepts using 50 descriptive scales
(7-point Likert scales whose poles were bipolar adjectives) [41]. Factor analy-
ses accounted for almost 70% of the common variance in a three-dimensional
configuration (50% of the total variance remained unexplained). The first factor
was clearly identifiable as evaluative, for instance representing adjective pairs
such as good/bad, beautiful/ugly (dimension also called valence), the second fac-
tor identified fairly well as potency, for instance related to bipolar adjectives
large/small, strong/weak, heavy/light (dimension also called dominance), and
the third factor appeared to be mainly an activity variable, related to adjec-
tives such as fast/slow, active/passive, hot/cold (dimension also called arousal).
Osgood’s EPA model was used for instance in the study [10] investigating how
well music (theme tune) can aid automatic classification of TV programmes from
BBC Information & Archive. A slight variation of the EPA model was used in [11]
with the potency dimension being replaced by one related to tension. Although
Osgood’s model has been shown to be relevant to classify affective concepts,
its adaptability to music emotions is notwithstanding not straightforward. As-
mus [2] replicated Osgood’s SDT in the context of music emotions classification.
Measures were developed from 2057 participants on 99 affect terms in response
to musical excerpts and then factor analysed. Nine affective dimensions (9AD)
were found to best represent the measures, two of which were found to be com-
mon to the EPA model. Probably because it is harder to visually represent nine
dimensions and because it complicates the classification problem, this model has
not been used yet in the MIR domain, to our knowledge.

The works that have had the most influence on the choice of emotion rep-
resentations in MER so far are those from Russell [44] and Thayer [57]. Russell
devised a circumplex model of affect which consists of a two-dimensional, circu-
lar structure involving the dimensions of arousal and valence (denoted AV and
called the core affect dimensions following Russell’s terminology). Within the AV
model, emotions that are across a circle from one another correlate inversely, as-
pect which is also in line with the semantic differential approach and the bipolar
adjectives proposed by Osgood. Schubert [53] developed a measurement interface
called the “two-dimensional emotional space” (2DES) using Russell’s core affect
dimensions and proved the validity of the methodology, experimentally. While
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the AV space stood out amongst other models for its simplicity and robustness,
higher dimensionality have shown to be needed when seeking for completeness.
The potency or dominance dimension related to power and control proposed by
Osgood is necessary to make important distinctions between fear and anger, for
instance, which are both active and negative states. Fontaine et al. [16] advocated
the use of a fourth dimension related to the expectedness or unexpectedness of
events, which to our knowledge has not been applied in the MIR domain so far.

A comparison between the categorical, or discrete, and dimensional models
has been conducted in [11]. Linear mapping techniques revealed a high corre-
spondence along the core affect dimensions (arousal and valence), and the three
obtained dimensions could be reduced to two without significantly reducing the
goodness of fit. The major difference between the discrete and categorical models
concerned the poorer resolution of the discrete model in characterizing emotion-
ally ambiguous examples. [60] compared the applicability of music-specific and
general emotion models, the Geneva Emotional Music Scale (GEMS) [71], the
discrete and dimensional AV emotion models, in the assessment of music-induced
emotions. The AV model outperformed the other two models in the discrimina-
tion of music excerpts, and principal component analysis revealed that 89.9%
of the variance in the mean ratings of all the scales (in all three models) was
accounted for by two principal components that could be labelled as valence and
arousal. The results also revealed that personality-related differences were the
most pronounced in the case of the discrete emotion model, aspect which seems
to contradict that obtained in [11].

2.3 Appraisal Model

The appraisal approach was first advocated by Arnold [1] who defined appraisal
as a cognitive evaluation able to distinguish qualitatively among different emo-
tions. The theory of appraisal therefore accounts for individual differences and
variations to responses across time [43], as well as cultural differences [47]. The
component process appraisal model (CPM) [48] describes an emotion as a pro-
cess involving five functional components: cognitive, peripheral efference, motiva-
tional, motor expression, and subjective feeling. Banse and Scherer [3] proved the
relevance of CPM predictions based on acoustical features of vocal expressions of
emotions. Significant correlations between appraisals and acoustic features were
also reported in [27] showing that inferred appraisals were in line with the theo-
retical predictions. Mortillaro et al. [39] advocate that the appraisal framework
would help to address the following concerns in automatic emotion recognition:
(i) how to establish a link between models of emotion recognition and emotion
production? (ii) how to add contextual information to systems of emotion recog-
nition? (iii) how to increase the sensitivity with which weak, subtle, or complex
emotion states can be detected? All these points are highly significant for MER
with a MIR perspective whereas appraisal models such as the CPM have not
yet been applied in the MIR field, to our knowledge. The appraisal framework is
especially promising for the development of context-sensitive automatic emotion
recognition systems taking into account the environment (e.g. work, or home),
the situation (relaxing, performing a task), or the subject (personnality traits),
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for instance [39]. This comes from the fact that appraisals themselves represent
abstractions of contextual information. By inferring appraisals (e.g. obstruction)
from behaviors (e.g. frowning), information about causes of emotions (e.g. anger)
can be inferred [7].

3 Acoustical and Contextual Analysis of Emotions

Studies in music psychology [56], musicology [18] and music information retrieval
[25] have shown that music emotions were related to different musical variables.
Table 2 lists the content and context-based features used in the studies reviewed
hereby. Various acoustical correlates of articulation, dynamics, harmony, instru-
mentation, key, mode, pitch, melody, register, rhythm, tempo, musical structure,
and timbre have been used in MER models. Timbre features have shown to pro-
vide the best performance in MER systems when used as individual features [52]
[73]. Schmidt et al. investigated the use of multiple audio content-based features
(timbre and chroma domains) both individually and in combination in a feature
fusion system [52] [49]. The best individual features were octave-based spectral
contrast and MFCCs. However, the best overall results were achieved using a
combination of features, as in [73] (combination of rhythm, timbre and pitch
features). Eerola et al. [12] extracted features representing six different musical
variables (dynamics, timbre, harmony, register, rhythm, and articulation) to fur-
ther apply statistical feature selection (FS) methods: multiple linear regression
(MLR) with a stepwise FS principle, principle component analysis (PCA) fol-
lowed by the selection of an optimal number of components, and partial least
square regression (PLSR) with a Bayesian information criterion (BIC) to se-
lect the optimal number of features. PLSR simultaneously allowed to reduce the
data while maximising the covariance between the features and the predicted
data, providing the highest prediction rate (R2=.7) with only two components.
However, feature selection frameworks operating by considering all the emotion
categories or dimensions at the same time may not be optimal; for instance, fea-
tures explaining why a song expresses “anger” or why another sounds “innocent”
may not be the same. Pairwise classification strategies have been successfully ap-
plied to musical instrument recognition [14] showing the interest of adapting the
feature sets to discriminate two specific instruments. It would be worth investi-
gating if music emotion recognition could benefit from pairwise feature selection
strategies as well.

In addition to audio content features, lyrics have also been used in MER,
either individually, or in combination with features belonging to different do-
mains (see multi-modal approaches in Section 4.4). Access to lyrics has been
facilitated by the emergence of lyrics databases on the web (e.g. lyricwiki.org,
musixmatch.com), some of them providing APIs to retrieve the data. Lyrics
can be analysed using standard natural language processing (NLP) techniques.
To characterise the importance of a given word in a song given the corpus it
belongs to, authors used the term frequency - inverse document frequency (TF-
IDF) measure [9] [36]. Methods to analyse emotions in lyrics have been developed
using lexical resources for opinion and sentiment mining such as SentiWordNet
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Table 2. Content (audio and lyrics) and context-based features used in MER (studies
between 2009 and 2011)

Type Notation Description References

Content-based features

Articulation EVENTD Event density [12]
Articulation/Timbre ATTACS Attack slope [12]
Articulation/Timbre ATTACT Attack time [12]

Dynamics AVGENER Average energy [19]
Dynamics INT Intensity [40]
Dynamics INTR Intensity ratio [40]
Dynamics DYN Dynamics features [45]
Dynamics RMS Root mean square energy [12] [35] [45]
Dynamics LOWENER Low energy [35]
Dynamics ENER Energy features [36]

Harmony OSPECENT Octave spectrum entropy [12]
Harmony HARMC Harmonic change [12]
Harmony CHROM Chroma features [52]
Harmony HARMF Harmony features [45]
Harmony RCHORDF Relative chord frequency [55]
Harmony WCHORDD Weighted chord differential [35]

Instrum./Rhythm PERCTO Percussion template occurrence [58]
Instrumentation BASSTD Bass-line template distance [58]

Key/Mode KEY Key [19]
Key/Mode KEYC Key clarity [12]
Key/Mode MAJ Majorness [12]
Key/Mode SPITCH Salient pitch [12]
Key/Mode WTON Weighted tonality [35]
Key/Mode WTOND Weighted tonality differential [35]

Pitch/Melody PITCHMIDI Pitch MIDI features [73]
Pitch/Melody MELOMIDI Melody MIDI features [73]
Pitch/Melody PITCH Pitch features [45]
Pitch/Timbre ZCR Zero-crossing rate [73] [72]

Register CHROMD Chromagram deviation [12]
Register CHROMC Chromagram centroid [12]

Rhythm/Tempo BEATINT Beat interval [19]
Rhythm/Tempo SPECFLUCT Spectrum fluctuation [12]
Rhythm/Tempo TEMP Tempo [12]
Rhythm/Tempo PULSC Pulse clarity [12]
Rhythm/Tempo RHYCONT Rhythm content features [73]
Rhythm/Tempo RHYSTR Rhythm strength [40]
Rhythm/Tempo CORRPEA Correlation peak [40]
Rhythm/Tempo ONSF Onset frequency [40]
Rhythm/Tempo RHYT Rhythm features [45]
Rhythm/Tempo SCHERHYT Scheirer rhythm features [55]
Rhythm/Tempo PERCF Percussive features [36]

Structure MSTRUCT Multidimensional structure features [12]
Structure STRUCT Structure features [45]

Timbre SPECC Spectral centroid [6] [35] [73]
Timbre HARMSTR Harmonic strength [19]
Timbre MFCC Mel frequency cepstral coefficient [6] [4] [58] [73] [62] [45] [52]

[49] [72] [59] [51] [45]
Timbre SPECC Spectral centroid [12] [73] [72] [50] [52] [40] [55]
Timbre SPECS Spectral spread [12]
Timbre SPECENT Spectral entropy [12]
Timbre SPECR Spectral rolloff [12] [73] [72] [50] [52] [40] [55]
Timbre SF Spectral flux [73] [72] [50] [52] [40] [55]
Timbre OBSC Octave-based spectral contrast [50] [52] [49] [51] [40] [29]
Timbre RPEAKVAL Ratio between average peak and valley strength [40]
Timbre ROUG Roughness [12]
Timbre TIM Timbre features [45]
Timbre SPEC Spectral features [36]
Timbre ECNTT Echo Nest timbre feature [51] [36]

Lyrics SENTIWORD Occurence of sentiment word [9]
Lyrics NEG-SENTIW Occurrence of sentiment word with negation [9]
Lyrics MOD-SENTIW Occurrence of sentiment word with modifier [9]
Lyrics WORDW Word weight [9]
Lyrics LYRIC Lyrics feature [73]
Lyrics RSTEMFR Relative stem frequency [55]
Lyrics TF-IDF Term frequency - Inverse document frequency [9] [36]
Lyrics RHYME Rhyme feature [63]

Context-based features

Social tags TAGS Tag relevance score [4]
Web-mined tags DOCRS Document relevance score [4]
Metadata ARTISTW Artist weight [9]
Metadata META Metadata features (e.g. artist’s name, title) [55]
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(measures of positivity, negativity, objectivity) [9], and the affective norm for En-
glish words (measures of arousal, valence, and dominance) [36]. Since meaning
emerges from subtle word combinations and sentence structure, research is still
needed to develop new features characterising emotional meanings in lyrics. [63]
proposed a feature to characterise rhymes whose patterns are relevant to emo-
tion expression, as poems can attest. To attempt to improve the performance
of MER systems only relying on content-based features, and in order to bridge
the semantic gap between the raw data (signals) and high-level semantics (mean-
ings), several studies introduced context-based features. [9], [6], [4], and [62] used
music tags mined from websites known to have good quality information about
songs, albums or artists (e.g. bbc.co.uk, rollingstone.com), social music platform
(e.g. last.fm), or web blogs (e.g. livejournal.com). Social tags are generally fused
with audio features to improve overall performance of the classication task [6]
[4] [62].

4 Machine Learning for Music Emotion Recognition

4.1 Early Categorical Approaches and Multi-Label Classification

Associating music with discrete emotion categories was demonstrated by the first
works that used an audio-based approach. Li et al. [31] used a song database
hand-labelled with adjectives belonging to one of 13 categories and trained Sup-
port Vector Machines (SVM) on timbral, rhythmic and pitch features. The au-
thors report large variation in the accuracy of estimating the different mood
categories, with the overall accuracy (F score) remaining below 50%. Feng et
al. [15] used a Back Propagation Neural Network (BPNN) to recognise to which
extent music pieces belong to four emotion categories (“happiness”, “sadness”,
“anger”, and “fear”). They used features related to tempo (fast-slow) and ar-
ticulation (staccato-legato), and report 66% and 67% precision and recall, re-
spectively. However, the actual accuracy of detecting each emotion fluctuated
considerably. The modest results obtained with early categorical approaches can
be attributed to the difficulty in assigning music pieces to any single category,
and the ambiguity of mood adjectives themselves. For these reasons subsequent
research have moved on to use multi-label, fuzzy or continuous (dimensional)
emotion models.

In multi-label classification, training examples are assigned multiple labels
from a set of disjoint categories. MER was first formulated as a multi-label clas-
sification problem by Wieczorkowska et al. [66] applying a classifier specifically
adopted to this task. In a recent study, Sanden and Zhang [46] examined multi-
label classification in the general music tagging context (emotion labelling is seen
as a subset of this task). Two datasets, the CAL500 and approximately 21,000
clips from Magnatune (each associated with one or more of 188 different tags)
were used in the experiments. The clips were modeled using statistical distri-
butions of spectral, timbral and beat features. The authors tested Multi-Label
k-Nearest Neighbours (MLkNN), Calibrated Label Ranking (CLR), Backpropa-
gation for Multi-Label Learning (BPMLL), Hierarchy of Multi-Label Classifiers
(HOMER), Instance Based Logistic Regression (IBLR) and Binary Relevance
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kNN (BRkNN) models, and two separate evaluations were performed using the
two datasets. In both cases, the CLR classifier using a Support Vector Machine
(CLRSVM ) outperformed all other approaches (peak F1 score of 0.497 and pre-
cision of 0.642 on CAL500). However, CLR with Decision Trees, BPMLL, and
MLkNN also performed competitively.

4.2 Fuzzy Classification and Emotion Regression

A possible approach to account for subjectivity in emotional responses is the
use of fuzzy classification incorporating fuzzy logic into conventional classifica-
tion strategies. The work of Yang et al. [70] was the first to take this route.
As opposed to associating pieces with a single or a discrete set of emotions,
fuzzy classification uses fuzzy vectors whose elements represent the likelihood of
a piece belonging to each respective emotion categories in a particular model. In
[70], two classifiers, Fuzzy k-NN (FkNN) and Fuzzy Nearest Mean (FNM), were
tested using a database of 243 popular songs and 15 acoustic features. The au-
thors performed 10-fold cross validation and reported 68.22% and 70.88% mean
accuracy for the two classifiers respectively. After applying stepwise backward
feature selection, the results improved to 70.88% and 78.33%.

The techniques mentioned so far rely on the idea that emotions may be or-
ganised in a simple taxonomy consisting of a small set of universal emotions (e.g.
happy or sad) and more subtle differences within these categories. Limitations of
this model include i) the fixed set of classes considered, ii) the ambiguity in the
meaning of adjectives associated with emotion categories, and iii) the potential
heterogeneity in the taxonomical organisation. The use of a continuous emotion
space such as Thayer-Russell’s Arousal-Valence (AV) space and corresponding
dimensional models is a solution to these problems. In the first study that ad-
dresses these issues [69], MER was formulated as a regression problem to map
high-dimensional features extracted from audio to the two-dimensional AV space
directly. AV values for induced emotion were collected from 253 subjects for 195
popular recordings. After basic dimensionality reduction of the feature space,
three regressors were trained and tested: Multiple Linear Regression (MLR) as
baseline, Support Vector Regression (SVR) and Adaboost.RT, a regression tree
ensemble. The authors reported coefficient of determination statistics (R2) with
peak performance of 58.3% for arousal, and 28.1% for valence using SVR. Han et
al. [19] used SVR for training distinct regressors to predict arousal and valence
both in terms of Cartesian and polar coordinates of the AV space. A policy
for partitioning the AV space (AV11C) and mapping coordinates to discrete
emotions was used, and an increase in accuracy from 63.03% to 94.55% was
obtained when polar coordinates were used in this process. Notably Gaussian
Mixture Model (GMM) classifiers performed competitively in this study. Schmidt
et al. [52] showed that Multi-Level Least-Squares Regression (MLSR) performs
comparably to SVR at a lower computational cost. An interesting observation
is that combining multiple feature sets does not necessarily improve regressor
performance, probably due to the curse of dimensionality. The solution was seen
in the use of different fusion topologies, i.e. using separate regressors for each
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12 Barthet, Fazekas and Sandler

feature set. Huq et al. [23] performed a systematic evaluation of content-based
emotion recognition to identify a potential glass ceiling in the use of regression.
160 audio features were tested in four categories, timbral, loudness, harmonic,
and rhythmic (with or without feature selection), as well as different regressors
in three categories, Linear Regression, variants of regression trees and SVRs
with Radial Basis Function (RBF) kernel (with or without parameter optimi-
sation). Ground truth data were collected to indicate induced emotion, as in
[69], by averaging arousal and valence scores from 50 subjects for 288 music
pieces. Confirming earlier findings that arousal is easier to predict than valence,
peak R2 of 69.7% (arousal) and 25.8% (valence) were obtained using SVR-RBF.
The authors concluded that small database size presents a major problem, while
the wide distribution of individual responses to a song spreading in the AV
space was seen as another limitation. In order to overcome the subjectivity and
potential nonlinearity of AV coordinates collected from users, and to ease the
cognitive load during data collection, Yang et al. proposed a method to auto-
matically determine the AV coordinates of songs using pair-wise comparison of
relative emotion differences between songs using a ranking algorithm [67]. They
demonstrated that the increased reliability of ground truth pays off when dif-
ferent learning algorithms are compared. In [68], the authors modeled emotions
as probability distributions in the AV space as opposed to discrete coordinates.
They developed a method to predict these distributions using regression fusion,
and reported a weighted R2 score of 54.39%.

4.3 Methods for Music Emotion Variation Detection

It can easily be argued however that emotions are not necessarily constant dur-
ing the course of a piece of music, especially in classical recordings. The problem
of Music Emotion Variation Detection (MEVD) can be approached from two
perspectives: the detection of time-varying emotion as a continuous trajectory
in the AV space, or finding music segments that are correlated with well defined
emotions. The task of dividing the music into several segments which contain
homogeneous emotion expression was first proposed by Lu et al. [34]. In [70], the
authors also proposed MEVD but by classifying features resulting from 10s seg-
ments with 33.3% overlap using a fuzzy approach, and then computing arousal
and valence values from the fuzzy output vectors. Building on earlier studies,
Schmidt et al. [50] demonstrated that emotion distributions may be modeled as
2D Gaussian distributions in the AV space, and then approached the problem
of time-varying emotion tracking. In [50], they employed Kalman filtering in a
linear dynamical system to capture the dynamics of emotions across time. While
this method provided smoothed estimates over time, the authors concluded that
the wide variance in emotion space dynamics could not be accommodated by
the initial model, and subsequently moved on to use Conditional Random Fields
(CRF), a probabilistic graphical model to approach the same problem [51]. In
modeling complex emotion-space distributions as AV heatmaps, CRF outper-
formed the prediction of 2D Gaussians using MLR. However, the CRF model
has higher computational cost.
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4.4 Multi-Modal Approaches and Fusion Policies

The combination of multiple feature domains have become dominant in recent
MER systems and a comprehensive overview of combining acoustic features with
lyrics, social tags and images (e.g. album covers) is presented in [25]. In most
works, the previously discussed machine learning techniques still prevail, how-
ever, different feature fusion policies may be applied ranging from concatenating
normalised feature vectors (early fusion) to boosting, or ensemble methods com-
bining the outputs of classifiers or regressors trained on different feature sets
independently (late fusion). Late fusion is becoming dominant since it solves the
issues related to tractability, and the curse of dimensionality affecting early fu-
sion. Bischoff et al. [6] showed that classification performance can be improved
by exploiting both audio features and collaborative user annotations. In this
study, SVMs with RBF kernel outperformed logistic regression, random for-
est, GMM, K-NN, and decision trees in case of audio features, while the Näıve
Bayes Multinomial classifier produced the best results in case of tag features.
An experimentally-defined linear combination of the results then outperformed
classifiers using individual feature domains. In a more recent study, Lin et al. [32]
demonstrated that genre-based grouping complements the use of tags in a two-
stage multi-label emotion classification system reporting an improvement of 55%
when genre information was used. Finally, Schuller [55] et al. combined audio fea-
tures with metadata and Web-mined lyrics. They used a stemmed bag of words
approach to represent lyrics and editorial metadata, and also extracted mood
concepts from lyrics using natural language processing. Ensembles of REPTrees
(a variant of Decision Trees) are used in a set of regression experiments. When
the domains were considered in isolation, the best performance was achieved
using audio features (chords, rhythm, timbre), but taking into account all the
modalities improved the results.

5 Discussion and Conclusions

The results from the audio mood classification (AMC) task ran at MIREX from
2007 to 2009, and that of studies published between 2009 and 2011 reviewed
in this article, suggest the existence of a “glass ceiling” for MER at F-measure
about 65%. In a recent study [45], high-level features (mode “majorness” and key
“clarity”) have shown to enhance emotion recognition in a more robust way than
low-level features. In line with these results, we claim that in order to improve
MER models, there is a need for new mid or high-level descriptors characteris-
ing musical clues, more adapted to explain our conditioning to musical emotions
than low-level descriptors. Some of the findings in music perception and cogni-
tion [56], psycho-musicology [17] [18], and affective computing [39] have not yet
been exploited or adapted to their full potential for music information retrieval.
Most of the current approaches to emotion recognition articulate on black-box
models which do not take into account the interpretability of the relationships
between features and emotion components; this is a disadvantage when trying
to understand the underlying mechanisms [64]. Other emotion representation
models, the appraisal models [39], attempt to predict the association between
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14 Barthet, Fazekas and Sandler

appraisal and emotion components making possible to interpret the relation-
ships. Despite the promising applications of semantic web ontologies in the field
of MIR, the ontology approach has only be scarcely used in MER. [62] proposed
a music-mood specific ontology grounded in the Music Ontology [42], in order
to develop a multi-modal MER model relying on audio content extraction and
semantic association reasoning. Such approach is promising since the system
from [62] achieved a performance increase of approximately 20% points (60.6%)
in comparison with the system by Feng, Cheng and Yang (FCY1), proposed at
MIREX 2009 [38]. Recent research focuses on the use of regression and attempt
to estimate continuous-valued coordinates in emotion spaces, which may then be
mapped to an emotion label or a broader category. The choice between regression
and classification is however not straightforward, as both categorical and dimen-
sional emotion models have strengths and weaknesses for specific applications.
Retrieving labels or categories given the estimated coordinates is often necessary,
which requires a mapping between the dimensional and categorical models. This
may not be available for a given model, may not be valid from a psychological
perspective, and may also be dependent on extra-musical circumstances. With
regard to the use of multiple modalities, most studies to date confirm that the
strongest factors enabling emotion recognition are indeed related to the audio
content. However a glass ceiling seems to exist which may only be vanquished
if both contextual features and features from different musical modalities are
considered.
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