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Abstract. An important issue in vector quantization (VQ) is the design of the 

codebook. The standard method for codebook design has been the generalized 

Lloyd algorithm (GLA) and Lind, Buzo and Gray (LBG) algorithm. Theses al-

gorithms can get stuck in suboptimal codebooks due to the presence of several 

locally minimum distortion values. Simulated annealing (SA) is an optimization 

procedure that uses randomness to escape local minima in its search for a glob-

ally minimum state. In this paper, we propose a method of applying simulated 

annealing to VQ codebook design problem. The results presented for speech 

samples represented by line spectrum Pairs (LSP) indicate that the resulting de-

sign with simulated annealing are better compared to GLA and LBG algo-

rithms.  
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1 Introduction 

VQ has become a powerful tool and its application has been frequently reported in the 

speech and image coding literature [1-3]. The basic definition of a vector quantizer Q  

of dimension n  and size K  is a mapping of a vector from n -dimensional Euclidean 

space,
nR  to a finite set, C , containing K  reproduction code-vectors [1]: 

 

 ,: CRQ n   (1) 

 

where  IiyC i  :  and 
n

i Ry   [1]. Associated with each reproduction code-

vector is a partition of 
nR , called a region or cell,  IiSS i  : [4]. The most popu-

lar form of VQ is the nearest neighbor VQ, where for each input source vector, x , a 
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search is done through the entire codebook to find the nearest code-vector,  iy , which 

has the minimum distance [5]: 

 

  xQyi   (2) 

 

 if     jiforyxdyxd ji  ,,   (3) 

 

where  yxd ,  is a distance measure between the vectors, x  and y . The mean 

squared error (mse) is used as the distance measure. Depending on the coding applica-

tion, other more meaningful distance measures may be used such as the the 

Mahalanobis distance [6], Itakura–Saito distance [7], or other perceptually-weighted 

distance measures [8]. 

If the dimension of the vectors is n  and a codebook of K  code-vectors is used, 

each vector will be represented as a binary code of length  K2log  bits. Hence the 

bitrate of the vector quantizer is given by  K
n

2log
1

 bits/sample [5]. 

Codebook design is the key problem of VQ and the generated codebook has more 

effect on the compression performance. The most widely used technique to create 

codebooks is a generalized Lloyd algorithm (GLA)[9], which is an iterative descent 

technique where an initial codebook is continually refined so that each iteration re-

duces the distortion involved in coding a given training set. The GLA algorithm pro-

vides no guarantee of optimality; a locally optimal solution may be obtained. The 

Linde–Buzo–Gray (LBG) algorithm [10] is an extension of the iterative Lloyd method 

[9], for use in VQ design. Because the LBG algorithm is not a variational technique,  

it can be used for cases where: the probability distribution of the data is not known a 

priori; we are only given a large set of training vectors; and the source is assumed to 

be ergodic [10]. The LBG algorithm involves refining an initial set of reproduction 

code-vectors using the Lloyd conditions [11], based on the given training vectors. The 

iterative procedure is stopped after the change in distortion becomes negligible. 

Research efforts in codebook design have been concentrated in two directions: to 

generate a better codebook that approaches the global optimal solution, and to reduce 

the computational complexity.  

All of the above algorithms have a local minimum problem. That is, the codebook 

guarantees local minimum distortion, but not global minimum distortion. To solve 

this problem, simulated annealing algorithms applied to image coding [12-14] have 

been proposed. Also, the method of using different initial points to find different 

codebooks, and then selecting the least distortion codebook as the final codebook, has 

been investigated. These last two methods can improve the codebook, but they in-

crease the complexity significantly, and they cannot guarantee global optimality. 
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 Competitive learning has also been applied to codebook design [15-20]. Codebook 

design algorithms based on evolutionary computation are new methods. In the design 

of the VQ codebook, the genetic algorithm (GA) is a random optimization algorithm 

based on the process of biological evolution by natural selection and genetic variation. 

GA has strong global search ability, but a weak local optimum capacity and slow 

convergence rate. It has advantages of easy use, universality and wide range of appli-

cation [21-24].  

Research on codebook design for VQ using simulated annealing has spanned over 

twenty years. Most work was focused on codebooks design for image coding. Less 

attention was paid to codebook design for speech signals.  

This paper explores the application of SA algorithm to design codebooks for split 

VQ (SVQ) of line spectrum pairs (LSP) parameters of speech signals and compare 

them with GLA and LBG, since these two algorithms remain used most often for 

developing codebooks [25,26]. 

 Our motivation for the use of LSP coefficient, to represent speech, is due to the 

fact that in many speech coders, the parameters of the all-zero predictor filter or the 

corresponding all-pole synthesis filter are coded and sent as part of the information 

stream [27]-[30].. Recently, there has been a growing interest in the use of (LSP’s) to 

code the filter parameters for linear predictive coding (LPC) of speech  

LSP’s are an alternative to the direct form predictor coefficients or the lattice form 

reflection coefficients for representing the filter response. The direct form coefficient 

representation of the LPC filters is not conducive to efficient quantization. Instead, 

nonlinear functions of the reflection coefficients (e.g., log-area ratio or inverse sine of 

the reflection coefficient) are often used as transmission parameters [31]. These pa-

rameters are preferable because they have a relatively low spectral sensitivity. 

LSP’s are an alternate parameterization of the filter with a one-to-one correspond-

ence with the direct form predictor coefficients. The concept of an LSP was intro-

duced by Itakura [32]. LSP’s encode speech spectral information more efficiently 

than other transmission parameters [28,33]. 

 We have opted for the quantization of the LSPs by SVQ. Our choice is justify by 

the fact that VQ provides greater quantization efficiency than the scalar quantization 

due to the high correlation between neighboring spectral lines and the intuitive spec-

tral interpolation [1]. Moreover, and  in order to make VQ practical for large dimen-

sion and high bitrates, a structure can be imposed on the codebook to decrease the 

search complexity and/or storage requirements. One way of achieving this is to use 

decompose the codebook into a Cartesian product of smaller codebooks [1,34].   

We will apply a 3-3-4 SVQ at 24 bits/frame to test our codebooks design. SVQ 

was first introduced by Paliwal and Atal [28,35] for quantization of line spectrum 

frequencies (LSF) in narrowband CELP speech coders and is used in the adaptive 

multirate narrowband (AMR-NB) codec [36]. SVQ is also used for quantizing Mel 

frequency-warped cepstral coefficients (MFCCs) in the ETSI distributed speech 

recognition (DSR) standard [37]. 
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In all cases, the codebook is designed to minimize the mean squared error mse, de-

fined by: 

 

  
21
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mse  (4) 

 

where ix  is the ith input sample and iy is the ith output codeword, n  is the dimen-

sion of the vectors and k   is the size of training sequence. 

 

The signal to noise (SNR) ratio to be maximized is given by: 

 

 
mseerroronquantizati

powersource
SNR source

2

1010 log10log10


  (5) 

 

The rest of this paper is organized as follows. In section 2, definitions and proper-

ties of LSP parameters are presented. In section 3, the SVQ method used for the quan-

tization of LSP coefficients is detailed. The SA algorithm is presented in section 4. 

Simulation results and discussions are given in section 5. Section 5 is dedicated to the 

conclusion.  

2 LSP Properties 

The linear predictive coding (LPC) method [38] is one of the most popular approach-

es for describing the time varying short-term spectrum of the speech signal. In many 

speech coding systems, LPC coefficients are transformed to the Line Spectrum Pairs 

(LSP) parameters [32] which are very effective representation for quantization of the 

LPC information. These parameters are preferable because they have a relatively low 

spectral sensitivity. This can be attributed to the intimate relationship between the 

LSP's and the formant frequencies. Accordingly, LSP's can be quantized taking into 

account spectral features known to be important in perceiving speech signals. In addi-

tion, LSP's lend themselves to frame-to-frame interpolation with smooth spectral 

changes because of their frequency domain interpretation. The LSP are related to the 

poles of the LPC filter (or the zeros of the inverse filter) in the Z-plane. For a p th-

order LPC analysis, the Z-transform of the LPC inverse filter is denoted by: 

 

   p
z
p
azaz

p
A


 ...1

1
1  (6) 
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The parameters  ia  pi ,...,2,1 , are commonly referred to as the LPC coefficients 

[38],  

From (1) two new polynomials are defined: 
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The roots of these polynomials are usually called the Line Spectrum Pairs (LSP). 

These polynomials have the following properties: 

 All zeros of LSP polynomials are on the unit circle. 

 Zeros of P(z) and Q(z) are interlaced with each other on the unit circle. 

The minimum phase property of  zAp  can be easily preserved if the first two 

properties are intact after quantization. 

Some important properties are described in detail in [32]. 

 

The 10th-order linear prediction corresponds to the frequency range of narrowband 

speech coders [39, 40].  

3 Split vector quantization of LSP parameters 

In this section we will present the SVQ definitions used for LSP coefficients quantiza-

tion.  

An m  part, n -dimensional SVQ [2] operating at b  bits/vector, divides the vector 

space, 
nR , into m  lower dimensional subspaces,  m

i

n
i
iR

1 , where  


m

i
inn

1
. 

Independent codebooks,  m
ii

C
1 , operating at  m

ii
b

1  bits/vector, where 

 


m

i
ibb

1
, are then designed for each subspace. In order to quantize a vector of 

dimension n , the vector is split into subvectors of smaller dimension. Each of these 

subvectors is then encoded using their respective codebooks. The memory and com-

putational requirements of the SVQ codebook are smaller than that of an unstructured 

VQ codebook. In terms of the number of floating point values for representing the 

SVQ codebooks as opposed to that of unstructured VQ: 
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i
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while the effective number of code-vectors of the resulting product codebook is the 

same as that of unstructured VQ at the same bitrate: 

 

 
b

m

i

bi 22

1




 (9) 

 

Therefore, the computational complexity and memory requirements for SVQ can 

be reduced considerably by splitting vectors into more parts.  

 

In our study, the LSP parameters vector of dimension 10 is split into three sub-

vectors, with the first sub-vector containing the three lowest LSP's, the second sub-

vector containing the three middle LSP's and the final sub-vector containing the four 

highest LSP's [28].  

4 Simulated Annealing 

This section introduces the principle of SA algorithm suitable for solving the prob-

lem of VQ codebook design..  

Simulated annealing is the computer modeling of the annealing process. By appro-

priately defining an effective temperature for the multivariable system, simulated 

annealing can solve a wide collection of optimization problems. Kirkpatrick et al. [12] 

were the first to use simulated annealing to solve such optimization problems. Starting 

from an initial state and with an initial temperature 0T , the simulated annealing pro-

ceeds as follows:  Alter the state by a random perturbation, and compute the resulting 

change in the cost function, E . If 0E , then the perturbed state is accepted as the 

new state. If 0E , then the perturbation is accepted with probability 

   TEEp /exp  . The state of the system is repeatedly perturbed until either a 

fixed number of attempts are made or a minimum number of attempts are accepted. 

The temperature T  is then reduced to the next lower temperature, and perturbations 

are again carried out. The number of perturbations attempted at each temperature and 

the sequence of temperatures is called the annealing schedule. Kirkpatrick et al. [41] 

recommended that the annealing schedule be developed by trial and error for a given 

problem, and chose 0)9.0( TT n
n  , for the VLSI partitioning problem. Hajek [41] 

recommended the schedule  1log  nCTn since this helps guarantee the global 

minimum. The primary advantage of simulated annealing is its ability to avoid local 

minima in its search for the state with globally minimum energy. Changes that both 

decrease and increase the cost function are accepted, making escape from local mini-

ma possible. In the next section codebooks design based SA will be tested. 
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5 Simulation results and discussions 

 

A key issue in VQ is the design of the codebook. Usually, VQ codebooks designed 

using GLA [9] and LBG [10] algorithms, as stated in the introduction, can get trapped 

in local minima. Here we will investigate the use of SA method to optimize code-

books for SVQ (3-3-4) with LSP parameters and compare its performance with GLA 

and LBG in terms of mse, SNR, number of iterations and time execution. 

The LSP coefficients where generated from the ITU-T G.729 standard, which op-

erates at 8 kbits/s[41]. The speech used is extracted from the TIMIT database [42]. 

The total number of vectors used for the training sequence is 229829. 

Here, vectors of dimension 10 representing speech LSP parameters are splitted into 

three subvectors of dimensions 3, 3 and 4 respectively. The bit allocation for each 

subvector is 8 bits with a total number of 24 bits/vector.  

The annealing schedule used is the common 0)9.0( TT n
n  , with 0T selected to 

achieve 99% acceptance. Twenty five acceptances or rejections were required before 

decreasing the temperature. 

Table 1 summarizes the results obtained with the GLA algorithm. It shows the 

initialmse  and finalmse when the mse  (eq. 4) is used as a cost function. Four cases are 

considered for each sub-vector of dimension n . Results obtained, when SNR  (eq. 5) 

is considered as cost function to be maximized, are also reported in Table 1. The 

initialSNR  and finalSNR are given considering four cases as mse  is used cost function.  

The total number of iteration and time execution is also given for each case. 

The initial codebooks, for the three sub-vectors considered here, are generated ran-

domly from the training sequence. Codebook index corresponds to the initial code-

book and can be any integer value. 

 

Tests for the LBG algorithm, reported in Table 2, are given by the statistical prop-

erties corresponding to each subvector represented by means and variances and are. 

Table 2 shows also the optimal mse and SNR and the corresponding number of itera-

tions and time execution for each subvector of dimension n  and size K=256. 

 

The results obtained for SA algorithm are summarized in Table 3. The initial tem-

perature iT  and its corresponding  in itia lmse   are given for each subvector of dimen-

sion n  when the mse is used as a cost function. The same thing for the final fT  and 

its corresponding finalmse  when the SNR is used as a cost function. It is also given in 

the same table the corresponding number of iterations and time execution for each 

vector of dimension n . 
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Table 1. Results obtained with GLA for codebooks of dimension n  and size K=256 of speech 

LSPs  

Code- 

book 

 

initialmse  finalmse  initialSNR  finalSNR  Codebook 

Index. 

 

iterations Time 

 

3n  

 K=256 

 

0.001706 0.000157 12.734338 23.097418 0 14 1.152 s 

0.000130 0.000073 23.921389 26.416121 50 12 0.981 s 

0.000214 0.000062 21.748373 27.116219 100 9 0.741 s 

0.011953 0.000829 4.280092 15.866799 400 23 1.883 s 

        

 

3n  

K=256 

0.002855 0.000418 16.250179 24.590706 0 24 1.983 s 

0.000590 0.000299 23.095110 26.054218 50 9 0.742 s 

0.000810 0.000232 21.722563 27.145992 100 9 0.741 s 

0.010768 0.001036 10.484547 20.650553 400 13 1.072 s 

 

 

4n  

K=256 

0.002654 0.000377 17.164139 25.634670 0 27 2.213 s 

0.000799 0.000355 22.378906 25.897436 50 15 1.241 s 

0.000953 0.000448 21.614010 24.888277 200 7 0.58   s 

0.005073 0.000689 14.350595 23.024261 300 15 1.231 s 

 

 

Table 2. Results obtained with LBG for codebooks of dimension n  and size K=256 of speech 

LSPs  

Codebook Mean Variance finalmse  finalSNR  iterations 

 

Time 

3n  

 K=256 

 

0.509195 0.032024 0.000047 28.294531       92 2.233 s 

3n  

K=256 

 

1.288222 0.120389 0.000194 27.930449       90 1.922 s 

4n  

K=256 

2.304135 0.138155 0.000222 27.936451       86 1.672 s 
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Table 3. Results obtained with SA for codebooks of dimension n  and size K=256 of speech 

LSPs  

Code- 

book 
iT  fT  initialmse  finalmse  initialSNR  finalSNR  

 

iterations  

 

Time 

3n  

K=256 

 

1 361089.9   0.011953 0.000034 4.280031 29.720501 19819 14min38s 

 

3n  

K=256 

 

 

10 

 
361074.9   

 

0.010768 

 

0.000136 

  

10.484393 

 

29.469749 

  

20299 

 

15min26s 

 

4n  

K=256 

 

500 

 
361088.9   

 

0.005534 

 

0.000186 

  

13.972967 

 

28.714369 

  

21238 

 

14min55s 

 

 

Comparing Tables 2 and 3, we can see that SA algorithm gives better results than 

LBG in terms of finalmse  for the three codebooks considered. We can also notice that 

the SA algorithm is more CPU time consuming compared to the LBG algorithm.  

Comparing Tables 1, 2 and 3, the results obtained with GLA in terms of finalmse , 

finalSNR  are worse than the other two methods, they are highly dependent on the 

initial codebook chosen. 

Comparing Tables 2 and 3, we notice that he LBG algorithm is faster but less effi-

cient than SA. This was expected because a descent method (LBG in our case) is 

theoretically less time consuming than Sa but less efficient. A descent method is often 

trapped in a local minimum especially when the objective function to minimize in our 

case, the mse, has several minima; this is due to the search criterion of a descent 

method. It evolves in its search for the solution (quantization codebook in our case) 

through the optimal set of solutions by not accepting a lower cost solution than the 

current solution from one step to another; it stops the search if a minimum is met but 

not necessarily the global minimum. 

The performance of a descent method is directly related to the quality of the initial 

solution from which begins the search procedure for the optimal solution, that's what 

we found for GLA. GLA is a descent method, which is identical to LBG (same opti-

mality conditions), but the major problem in the GLA algorithm is the choice of the 

initial codebook. We chose to create the initial codebook of GLA randomly and we 

noticed that some GLA codebooks approached the initial results obtained by LBG and 

SA, but more often in practice it is not easy to find an initial codebook that ensure the 

convergence of GLA to an optimal codebook, it may be more difficult than the origi-

nal problem and therefore a waste of time and more without reaching suitable results. 

 

SA performs better than LBG and GLA; this is due to the global search of SA. It 

accepts solutions that improve the cost of the objective function (in our case mse or 

202



SNR) and also in a controlled manner (probabilistic) solution which degrade it. The 

performance of SA is directly related to the cooling scheme selected and the number 

of iterations per temperature. For a given time, the simulated annealing will approach 

as possible the optimal solution. In some problems the time required for simulated 

annealing performance could be seen as a disadvantage, but for the quantization prob-

lem this is not a waste of time because the quantization codebook is designed eternal-

ly. 

 

6 Conclusion 

Simulated annealing is a powerful optimization procedure that achieves near globally-

minimum-cost solutions to many optimization problems. In this paper, we attempted 

to apply SA to improve the quality of codebooks SVQ for the quantization of spectral 

parameters represented by LSPs. SA provided the best SNR and mse results, avoiding 

the initial codebook dependence found when using the GLA. 

Simulated annealing, while itself, too time consuming, does serve to obtain a near 

globally-optimum solution for codebook design.  Future research will focus on more 

sophisticated algorithms based genetic algorithms and Tabu search. 
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