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Abstract. A recent system combining sparse representation classifica-
tion (SRC) and a perceptually-based acoustic feature (ATM) [31, 30, 29],
is reported to outperform by a significant margin the state of the art in
music genre recognition, e.g., [3]. With genre so difficult to define, this re-
markable result motivates investigation into, among other things, why it
works and what it means for how humans organize music. In this paper,
we review the application of SRC and ATM to recognizing genre, and
attempt to reproduce the results of [31] where they report 91% accuracy
for a 10-class dataset. We find that only when we pose the sparse rep-
resentation problem with inequality constraints, and, more significantly,
reduce the number of classes by half, do we begin see accuracies near
those reported. In addition, we find evidence that this approach to clas-
sification does not benefit significantly from the features being based on
a perceptual analysis.

1 Introduction

Simply because we lack clearly definitive examples, and any utilitarian defini-
tions, the automatic recognition of music genre is different from other tasks in
music information retrieval. The human categorization of music seems natural,
yet appears fluid and often arbitrary by the way it appears motivated by more
than measurable characteristics of audible changes in pressure [9, 26, 17]. Extra-
musical information, such as artist fashion, rivalries and the fan-base, associated
dance styles, lyrical subjects, societal and political factors, religious beliefs, and
origins in time and location, can position a particular piece of music into one
category or another, not often without debate [38]. With the changing fashions
of communities and the needs of companies, new genres are born [17]. And gen-
res become irrelevant and lost, though we might still hear the recorded music
and classify it as something entirely different.

It seems daunting then to make a computer recognize genre with any success.
Yet, in developments between 2002 and 2006 [23], we have seen the accuracy of
such algorithms progress from about 60% — using parametric models created
from bags of features [43] — to above 80% — aggregating features over long time
scales and boosting weak classifiers [3]. The majority of approaches developed
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so far use features derived only from the waveform, and/or its symbolic form.
Some work has also explored mining user tags [27] and written reviews [1], or
analyzing song lyrics [22]. Since humans have been measured to have accuracies
around 70% after listening to 3 seconds of music — which surprisingly drops
only down to about 60% for only half a second of listening [13] — the results of
the past decade show that the human categorization of music appears grounded
to a large extent in acoustic features, at least at some coarse granularity.

Recently, we have seen a large leap in genre classification accuracy. In [31, 30,
29], the authors claim that with a perceptually-motivated acoustic feature, and
a framework of sparse representation classification (SRC) [46], we move from
82.5% accuracy [3] to up to 93.7%. SRC, which has produced very promising re-
sults in computer vision [46, 47] and speech recognition [11, 35], can be thought
of as a generalization of k-nearest neighbors (kNN) for multiclass classification
with many important advantages. It is a global method, in the sense that it clas-
sifies based on the entire training set; and it does not rely only on local similarity
information as does kNN. SRC can prevent overcounting of neighborhood infor-
mation by virtue of its emphasis on sparsity in the representation. Additionally,
SRC assigns a weight to each training set sample, thus quantifying the degree
of its importance. All of these points make SRC a strong classification method.

The massive improvement in genre recognition that accompanies this ap-
proach motivates many questions, not only about what is working and why it
is working so well, but also about how we perceive rich acoustic scenes, and
the way we think and talk about music. For instance, are these purely acoustic
features so discriminative because they are modeled on the auditory system of
humans? Since the features in [31] are computed from segments of very long
duration (30 s), how robust is the method to shorter observations, e.g., can it
reach 60% for 500 ms? Do its misclassifications make sense, and to some extent
forgivable? Do the features cluster in a sensible way, and do subgenres appear
as smaller clusters within larger clusters? Can we compute high-level descriptors
from these features, such as rhythm, harmony, or tempo?

In this work, we review the approach proposed in [31], and describe our
attempt to reproduce the results, making explicit the many decisions we have
had to make to produce the features, and to build the classifier. The accura-
cies we observe, however, are 30–40% inferior to those in [31], even with the
improvement we observe when posing the sparse representation problem using
inequality constraints rather than the equality constraints specified in [31, 30,
29]. Only when we reduce by half the number of classes tested in [31] do we
see the reported high accuracies. In addition, we find evidence that the per-
ceptual nature of the features has no significant impact on the classifier ac-
curacy. We make available our MATLAB code, both classification and feature
extraction, with which all results and figures in this article can be reproduced:
http://imi.aau.dk/~bst/software/.

2 Background

We now review SRC from a general perspective, and then we review modulation
analysis for feature extraction, and its application specifically to music genre
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recognition. Throughout, we work in a real Hilbert space with inner product
〈x,y〉 := yTx, and p-norm ‖x‖pp :=

∑
i |[x]i|p, for p ≥ 1, where [x]i is the ith

component of the column vector x.

2.1 Classification via sparse representation in labeled features

Define a set of N labeled features, each belonging to one of C enumerated classes

D := {(xn, cn) : xn ∈ Rm, cn ∈ {1, . . . , C}}n∈{1,...,N} . (1)

And define Ic ⊂ {1, . . . , N} as the indices of the features in D that belong to
class c. Given an unlabeled feature y ∈ Rm, we want to determine its class using
D. In kNN, we assume that the neighborhood of y carries class information,
and so we classify it by a majority vote of its k-nearest neighbors in D. Instead
of iteratively seeking the best reconstruction of y by a single training sample
(i.e., its ith nearest neighbor), we find a reconstruction of y by all training
samples. Then we choose the class whose samples contribute the most to the
reconstruction. We have SRC when we enforce a sparse reconstruction of y.

SRC essentially entails finding nearest to an unlabeled feature its linear ap-
proximation by class-restricted features. To classify an unlabeled feature y, we
first find the linear combination of features in D that constructs y with the
fewest number of non-zero weights, regardless of class membership, posed as

min
a∈RN

‖a‖0 subject to y = Da (2)

where we define the m × N matrix D := [x1|x2| . . . |xN ], and the pseudonorm
‖a‖0 is defined as the number of non-zero weights in a := [a1, a2, . . . , aN ]T . We
might not want to enforce equality constraints, and so we can instead pose this

min
a∈RN

‖a‖0 subject to ‖y −Da‖22 ≤ ε2 (3)

where ε2 > 0 is a maximum allowed error in the approximation. All of this, of
course, assumes that we are using features that are additive. We can extend this
to non-linear combinations of features by adding such combinations to D [35],
which can substantially increase the size of the dictionary.

We now define the set of class-restricted weights {ac}c∈{1,2,...,C}

[ac]n :=

{
an, n ∈ Ic
0, else.

(4)

The non-zero weights in ac are thus only those specific to class c. From these,
we construct the set of C approximations and their labels Y(a) := {ŷc(a) :=
Dac}c∈{1,2,...,C}, and we assign a label to y simply by a nearest neighbor criterion

ĉ := arg min
c∈{1,...,C}

‖y − ŷc(a)‖22. (5)

Thus, SRC picks the class of the nearest approximation of y in Y(a).

381



4

We cannot, in general, efficiently solve the sparse approximation problems
above [8], but there exist several strategies to solve them. We briefly review
the convex optimization approaches, but [42] provides a good overview of many
more; and [48] is a large study of SRC using many approaches. Basis pursuit
(BP) [6] proposes relaxing strict sparsity with the convex `1-norm

min
a∈RN

‖a‖1 subject to y = Da. (6)

And without equality constraints, BP denoising (BPDN) [6] poses this as

min
a∈RN

‖a‖1 subject to ‖y −Da‖22 ≤ ε2. (7)

One could also change the `2 error to `1 to promote sparsity in the error [47, 12].
We have the LASSO [41] when we switch the objective and constraint of BPDN

min
a∈RN

‖y −Da‖22 subject to ‖a‖1 ≤ ρ (8)

where ρ > 0. Furthermore, we can pose the problem in a joint fashion

min
a∈RN

1

2
‖y −Da‖22 + λ‖a‖1 (9)

where λ > 0 tunes our preference for sparse solutions versus small error.
Along with using the `1 norm, we can reduce the dimensionality of the prob-

lem in the feature space [47]. For instance, the BPDN principle (7) becomes

min
a∈RN

‖a‖1 subject to ‖Φy −ΦDa‖22 ≤ ε2 (10)

where Φ is a fat full-rank matrix mapping the features into some subspace. To
design Φ such that the mapping might benefit classification, we can compute
it using information from D, e.g., by principal component analysis (PCA) or
non-negative matrix factorization (NMF), or we can compute it non-adaptively
by random projection. With PCA, we obtain an orthonormal basis describing
the directions of variation in the features, from which we define ΦT as the d ≤ m
significant directions, i.e., those having the d largest principal components.

Given d ≤ m, NMF finds a positive full rank m× d matrix U such that

min
U∈Rm×d

+

1

N

N∑

n=1

‖xn −Uvn‖22 subject to vn � 0. (11)

The full-rank matrix U contains d templates that approximate each feature in
D by an additive combination. Thus the range space of U provides a good
approximation of the features in D, with respect to the mean `2-norm of their
errors. In this case, we make ΦT := (UTU)−1UT .

Finally, we can reduce feature dimensionality by random projection [7, 4,
21], where we form the entries of Φ by sampling from a random variable, e.g.,
Normal, and without regard to D. We normalize the columns to have unit `2-
norm, and ensure Φ has full rank. While this approach is computationally simple,
its non-adaptivity can hurt classifier performance [21].
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2.2 Modulation Analysis

Modulation representations of acoustic signals describe the variation of spectral
power in scale, rate, time and frequency. This approach has been motivated by
the human auditory and visual systems [44, 15, 36, 40, 24]. In the literature, we
find two types of modulation representations of acoustic signals, which seemingly
have been developed independently. One might see these approaches as a form
of feature integration, which aggregate a collection of small scale features.

In [44, 24], the authors model the output of the human primary auditory
system as a multiscale spectro-temporal modulation analysis, which [44] terms
a “reduced cortical representation” (RCR). To generate an RCR, one first pro-
duces an “auditory spectrogram” (AS) approximating the time-frequency dis-
tribution of power at the output of the early stage of the auditory system [49].
This involves filtering the signal with bandpass filters modeling the frequency re-
sponses of the hair cells along the basilar membrane, then calculating activations
of the nerve cells in each band, and finally extracting a spectral power estimate
from the activation patterns [49, 44, 24]. In the next step, which models the cen-
tral auditory system, one performs a “ripple analysis” of the AS, giving the
local magnitudes and phases of modulations in scale and modulation rate over
time and frequency [44, 24]. This procedure uses 2-D time-frequency modulation-
selective filters, equivalent to a multiresolution affine wavelet analysis sensitive
to fast and slow upward and downward changes in frequency [44]. To obtain
spectro-temporal modulation content [24], one integrates this four-dimensional
representation over time and/or frequency.

A similar representation is proposed in [15], where the authors extract mod-
ulation information by applying a Fourier transform to the output of a set of
bandpass filters modeling the basilar membrane. The magnitude output of this
gives a time-varying modulation spectrogram. One could instead apply a wavelet
transform to each row of a magnitude spectrogram, and then integrate the power
at each scale of each band along the time axis. This produces a modulation rate-
scale representation [40].

Motivated by its perceptual foundation [49, 44], and success in automatic
sound discrimination [45, 24], the work of [28] appears to be the first to use
modulation analysis features for music genre recognition, which they further re-
fine in [31, 30, 32]. In [28], the authors use the toolbox by the Neural Systems
Laboratory (NSL) [33, 34] to derive an RCR and perform a ripple analysis. They
then average this across time to produce tensors of power distributed in modula-
tion rate, scale, and acoustic frequency. While the features in that work are built
from the RCR [44, 24], the features used in [31, 30] are a joint scale-frequency
analysis [40] of an AS created from the model in [49]. This feature, which they
call an “auditory temporal modulation” (ATM), describes power variation over
modulation scale in each primary auditory cortex channel.

3 Recreating the Features and Classifier of [31]

In this section, we first describe how we generate ATM features, which are de-
scribed in part in [31, 32]; and then we describe the approach to classify an ATM
using SRC presented in part in [31].
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3.1 Building Auditory Temporal Modulations

The authors take 30 seconds of music, downsample it to 16 kHz, then make it
zero mean and unit variance. They then compute an AS following the model of
the primary auditory system of [49], except they use a constant-Q transform of
96 bandpass filters covering a 4-octave range (24 filters per octave), whereas [49]
uses an affine wavelet transform of 64 scales covering 5 octaves from about 173 Hz
to 5.9 kHz. Finally, they pass each channel of the AS through a Gabor filterbank
sensitive to particular modulation rates, and form the ATM by integrating the
energy output at each filter.

To create ATMs, we have tried to follow as closely as possible the description
in [31, 32]. We first generate a constant-Q filter bank with 97 bands spaced over a
little more than four octaves, with Nf = 24 filters per octave. We center the first
filter at 200 Hz because that is specified in [49]. The last filter is thus centered
on 3200 Hz. Since in [49] the model of the final stage of the primary audio cortex
computes first-order derivates across adjacent frequency bands, we end up with
a 96 band AS as specified in [31, 32].

We create our constant-Q filter bank as a set of finite impulse response filters
designed by the windowing method [25]. Since it is not mentioned in [49, 31, 32],
we make all filters independent, and to have the same gain. To generate the
impulse responses of our filterbank, we modulate a prototype lowpass window
to logarithmically spaced frequencies. Because of its good low passband charac-
teristic, we use a Hamming window, which for the kth filter (k ≥ 1) produces
the impulse response sampled at Fs Hz

hk(n) := γk

[
0.54− 0.46 cos

(
2πn

lk

)]
ej2πωkn/Fs , 0 ≤ n < lk (12)

with a modulation frequency ωk := fmin2(k−1)/Nf Hz, and length in samples

lk :=

⌈
q

2k/Nf − 2(k−1)/Nf

Fs
fmin

⌉
. (13)

We set the gain γk such that there is no attenuation at the kth center frequency,
i.e., |F {hk(n)} (ωk)| = 2, where F{x(n)}(ω) is the Fourier transform of x(n)
evaluated at frequency ω. The factor q > 0 tunes the width of the main lobe.
We choose q ≈ 1.316 such that adjacent filters overlap at their -3 dB stopband.

This model of the basilar membrane is simplified considering its non-adaptive
and uniform nature, e.g., it does not take into account masking and equal loud-
ness curves. An alternative model of the cochlea is given by Lyon [20], which
involves a filterbank with center frequencies spread uniformly below a certain
frequency, and logarithmically above [37]. Figure 1 shows that the Lyon model
attenuates single sinusoids at frequencies tuned to the center frequencies of its fil-
terbank. Our filterbank uniformly passes these frequencies, albeit over a smaller
four octave range [31, 32] assumed to begin at 200 Hz. Figure 1 also shows that
the filterbank of the NSL model [34] by and large has a uniform attenuation.
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Fig. 1. Attenuations of single sinusoids with the same power, at frequencies identical to
center frequencies in the filterbanks. (x) Our constant-Q filter bank. (o) Lyon passive
ear model [20, 37]. (�) NSL ear model [34].

We pass though our constant-Q filter bank a sampled, zero-mean and unit-
variance acoustic signal y(n) [31, 32], which produces for the kth filter the output

yk(n) :=

lk−1∑

m=0

hk(m)y(n−m−∆k) (14)

where ∆k > 0 is the group delay of the kth filter at ωk. This delay correction is
necessary because the filters we use to model the basilar membrane have different
lengths. This correction is unnecessary in the implementation of the Lyon [37]
or NSL models [34], since they use second-order sections with identical delays.

As in [31, 32], we next take the sample wise difference in each band

y′k(n) := yk(n)− yk(n− 1). (15)

which models the action potential of the hair cell [49]. This now goes through
a non-linear compression, followed by a low pass filter modeling leakage in the
hair cell membrane. Referring to [49], we see the compression can be modeled
as a sigmoidal function, and that the output of the kth channel is

gk(n) :=
1

1 + e−γy
′
k(n)
− 1

2
(16)

where γ > 0 is depends on sound pressure level [49]. Furthermore, “... saturation
in a given fiber is limited to 30-40 dB” [49], implying γ is somehow set adaptively.
In reality, we cannot equate the values of the digital samples in y′k(n) with
the physical pressure embodied in this compression. However, working naively,
we might absorb into γ such a conversion, and find some value that actually
compresses. Figure 2 shows the cumulative distribution of amplitudes input to
the compressor (15) with a 30 second music signal having unit energy [31, 32].
For γ = 1, we see that this distribution is compressed, whereas setting γ = 10
results in an expansion. Thus, we set γ = 1 independent of the input, and assume
it compresses y′k(n) from any 30 second music signal scaled to have unit energy.
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Fig. 2. Cumulative distributions of amplitude input to compressor (y′k(n)), and output
as a function of γ (labeled).

The compressor output gk(n) is then smoothed by the hair cell membrane
and attendant leakage [49, 32], which passes frequencies only up to 4 – 5 kHz
[49]. Thus, we pass each gk(n) through a 6th-order Butterworth filter having a
cutoff frequency of 4 kHz, producing fk(n). This is then processed by a “lat-
eral inhibitory network,” described in [49], which detects discontinuities in the
response. This entails a spatial derivative across channels with smoothing, a
half-wave rectifier, and then integration; but [31, 32] does not specify smooth-
ing, and states the process can be approximated by a first order derivative across
logarithmic frequency. Thus, we compute for channel s ∈ {1, . . . , 96}

vs(n) := [fs+1(n)− fs(n)]µ[fs+1(n)− fs(n)] (17)

where µ(u) = 1 if u ≥ 0, and zero otherwise.
In the final step, we integrate the output with “a [possibly rectangular win-

dow with a] long time constant (10-20 ms)” [49], or a 2 – 8 ms exponential
window [31, 32]. Thus, we compute the nth sample of the kth row of the AS by

Ak(n) :=

bFsτc∑

m=0

vs(n−m)e−m/Fsτ (18)

where we define τ := 8 ms. This completes the first step of building an ATM.
Figure 3 compares the resulting AS from our model built from interpreting

[49, 31, 32], that of the auditory model designed by Lyon [20, 37], and the corti-
cal representation from the NSL model [33, 34]. The Lyon model uses 86 bands
non-uniformly spread over a little more than 6.5 octaves in 80 – 7630 Hz [20,
37], whereas the NSL model covers 5.33 octaves with 24 filters per octave log-
arithmically spread over 180 – 7246 Hz [33, 34]. Though the frequency range of
those models are larger, we only use a 4-octave range as in [31, 32].

To generate an ATM, [31, 32] describe first performing a multiresolution
wavelet decomposition of each row of an AS, and then integrating the squared
output across the translation axis. Based on experimental evidence [36], the au-
thors use a set of Gabor filters sensitive to eight modulation rates {2, 4, 8, . . . , 256}
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(a) From model assembled from [49, 31, 32]

(c) From Lyon ear model [20, 37]

(e) From NSL model [33, 34]

Fig. 3. Auditory spectrograms (left) and their auditory temporal modulations (right).

Hz. We assume this Gabor filterbank can be assembled as follows. We define the
sampled impulse response truncated to length Nl of our complex Gabor filter
tuned to a modulation rate f02l ≥ 0 Hz, and of scale Fsα/f02l > 0

ψ(n; f02l) :=
f02l

Fsα

[
e−(f02

l/α)2((n−Nl/2)/Fs)
2

ej2πf02
ln/Fs − µl

]
(19)

for n = 0, . . . , Nl − 1, where we define µl such that ψ(n; f02l) has zero mean.
The normalization constant assures uniform attenuation at each modulation
frequency, as used in joint scale-frequency analysis [40]. We set α = 256/400
and Nl = 4Fsα/f02l. Since a Gabor filter tuned to a low frequency has a high
DC component, we make each row of the AS zero mean, thus producing A′k(n).
Passing the kth row of this AS through the lth channel (l ∈ {0, 1, . . . , 7}) of the
Gabor filterbank produces the convolution Rk,l(n) := [ψ(m; f02l) ? A′k(m)](n).
Finally, as in [31, 32], we sum the squared modulus of the output sampled at all
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wavelet translations, producing the (k, l) element of the ATM

[A]kl :=
∑

p∈Z
|Rk,l(pbFsα/f02l+1c)|2 (20)

where p is an integer multiplying the wavelet translations, which we assume is
half the wavelet scale.

To the right of each AS in Fig. 3 we see the resulting ATM. Portions of these
ATMs appear similar, with major differences in scaling and feature dimension-
ality. Within the four octave range specified in [31, 32], the dimensionality of the
vectorized features are: 768 for the ATM in [31, 32], 416 for that created from
the model by Lyon [20, 37], and 800 using the NSL model [33, 34].

3.2 Classifying Genre by Auditory Temporal Modulations

Given a set D of vectorized ATM features, each associated with a single music
genre, we can use the machinery of SRC to label an unknown vectorized ATM
y. Following [31], we first make all features of D have unit `2-norm, as well as
the test feature y. We next solve the BP optimization problem posed in [31]

min
a∈RN

‖a‖1 subject to Φy = ΦDa (21)

where Φ reduces the features by, e.g., PCA. Finally, to classify y, we construct
the set of weights in (4), and assign a single genre label using the criterion (5).

Since we are working with real vectors, we can solve (21) as a linear program
[6], for which numerous solvers have been implemented, e.g., [5, 10, 2, 14]. Because
of its speed, we choose as the first step the root-finding method of the SPGL1
solver [2]. If this fails to find a solution, then we use the primal-dual method
of `1-Magic [5], which takes as its starting point the minimum `2-norm solution
a2 := (ΦD)†y. This initial solution satisfies the constraints of (21) as long as
ΦD has full rank, but probably is not the optimal solution. If the solution â
does not satisfy ‖Φy −ΦDâ‖22 < 10−16 (numerical precision), we set â := a2.

4 Experimental Results

As in [31], we use the music genre dataset of [43] (GTZAN),3 which has 1000 half-
minute sound examples drawn from music in 10 broad genres: blues, classical,
country, disco, hiphop, jazz, metal, pop, reggae, and rock. We define Φ by PCA,
NMF, or random sampling; and as in [31], we test dimension reduction by factors
of {64, 16, 8, 4}, e.g., we reduce a feature vector of 768 dimensions by a factor of
four to 192 dimensions. We also test downsampling the features, but we define
it as vectorizing the result of lowpass filtering and decimating each column of
the ATM (20). It is not clear how downsampling is done in [31]. In our case, a
factor of f downsampling results in a vectorized feature of dimension 8d96/fe
when using our 96-channel features. Finally, as done in [3, 31], we use stratified
10-fold cross-validation for classifier training and testing.

3 Available at: http://marsyas.info/download/data_sets
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(a) Features assembled from [49, 31, 32]

64 16 8 4
0

10

20

30

40

50

60

70

80

90

100

Dimension Reduction Factor

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

(b) Features from Lyon ear model [20, 37]
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(c) Features from NSL model [33, 34]
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(d) Vectorized ATM from constant-Q
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Fig. 4. Mean classification accuracy (10 classes) of SRC based on (21) for four differ-
ent feature design methods, four dimension reduction methods, and several reduction
factors. Overlaid is the standard deviation. (We add a slight x-offset to each bar for
readability.)

Figure 4 shows our classification results for four different features, including
the vectorized modulation-analysis of the magnitude output of the constant-Q
filterbank that precedes (15). Across all features and dimension reduction meth-
ods and factors, we see no mean accuracies above 57.3% — which is produced
by using features that do not model the entire primary auditory cortex. Since
we see all mean accuracies are within one standard deviation of each other, we
cannot claim one feature, reduction method is performing significantly different
from any other. This result has been observed before in the application of SRC to
face recognition [47]. In the experimental results of [31], however, we see features
reduced a factor of 4 by NMF give the best results: mean accuracy of around
91% with a standard deviation of 1.76%. From the plots in [31], we can surmise
there to be a statistically significant (e.g., α := 0.05) difference between the
features reduction methods. This contradicts our results and those of [47], not
to mention the significant difference between the best accuracies on this same
dataset with the same experimental protocol.

We have verified every part of our system is working as expected. We have
performed modulation analysis on synthetic signals with known modulations.
We have tested and confirmed on a handwritten digits dataset [16] that the SRC
classifier performs comparably to other classifiers, and that our feature reduction
is working. In this context too, we find no signficant difference in performance
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(a) BPDN (ε2 := 10−4)
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(b) LASSO (ρ := 1)
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Fig. 5. Mean classification accuracy (10 classes) of SRC based on the BPDN (22)
and LASSO (23), with features having dimensions mapped to [0, 1], and a normalized
projected dictionary, for ATM features from the Lyon model [20, 37], four dimension
reduction methods, and several reduction factors. Overlaid is the standard deviation.

between feature reduction methods. From our experimentation, and conversation
with the authors of [31], we believe that these differences come from several
things, three of which are significant.

First, it is common in machine learning to preprocess features by accounting
for dimensions with different scales. Panagakis et al. state that they make the
values of each row of D be in [0, 1] by finding and subtracting the minimum,
and then dividing by the difference of the maximum and minimum.4 When we
rerun the experiments above with this modified data, we see the mean accuracy
increases, but does not exceed the highest of 64% for the NSL features reduced
in dimensionality a factor of 4 by PCA. Again, we see no significant difference
between classifier performance with these features.

The second problem is posing the sparse representation with equality con-
straints in (21), which forces the sparse representation algorithm to model a
feature exactly when instead we just want to find a good model of our feature.
We thus pose the problem instead using BPDN [6] (7)

min
a∈RN

‖a‖1 subject to ‖Φy −ΦDa‖22 ≤ ε2. (22)

or as the LASSO [41] (8)

min
a∈RN

‖Φy −ΦDa‖22 subject to ‖a‖1 ≤ ρ. (23)

Solving these can produce an informative representation using few features in-
stead of an exact fit by many.

Using features with dimensions mapped to [0, 1], and a column-normalized
dimension-reduced dictionary ΦD, Fig. 5(a) shows the results of using BPDN
(22); and Fig. 5(b) shows the results when we pose the problem as the LASSO
(23). (We show only the results from the Lyon model since the other features
did not give significantly different results.) In both cases, we use SGPL1 [2] with

4 Personal communication.
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(a) Features from Lyon model [20, 37]
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(b) Features from NSL model [33, 34]
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Fig. 6. Mean classification accuracy (5 classes) of SRC based on the LASSO (23) with
ρ := 1, with features having dimensions mapped to [0, 1] and a normalized projected
dictionary, for ATM features derived from a larger frequency range, four dimension
reduction methods, and several reduction factors. Overlaid is the standard deviation.

at most 100 iterations, and use the result whether it is in the feasible set or not.
This is different from our approach to solving (21), where we run `1-Magic [5]
if SPGL1 fails, and then use the minimum `2-norm solution if this too fails. In
our experiments, we see (23) is solved nearly all the time for ρ := 1, and (22)
is solved only about 5% of the time with ε2 := 10−4; yet we see no significant
differences between the accuracies of both cases. With these changes, we see a
slight increase in mean accuracies to about 68% for the features derived from
the Lyon model [20, 37], but still far from the 91% reported in [31].

The third significant problem comes from the definition of the features. We
find that accuracy improves slightly if we use features from a wider frequency
range than the four octaves mentioned in [31], e.g., all 86 bands of the AS from
the Lyon model, covering 80 – 7630 Hz [20, 37], or all 128 bands of the AS from
the NSL model [33, 34], logarithmically spread over 180 – 7246 Hz. With these
changes, however, our mean accuracies do not exceed 70%.

The only way we have found to obtain something close to the 91% mean
accuracy reported in [31] is to limit the classification problem to the first five
genres of GTZAN: blues, classical, country, disco, and hiphop. Figure 6 shows
our results using features derived from the Lyon and NSL models with a wide-
frequency range, dimensions mapped to [0, 1], and solving the problem posed
with LASSO (23). Though we see the standard deviations are smaller, we still
cannot say one feature reduction method performs signficantly different than
any other, in contradiction to the findings of [31].

5 Conclusion

Were the difficult problem of music genre recognition solved, it would present
a wonderful tool for exploring many interesting questions; and were it solved
using solely acoustic features, it would say something significant about a process
that appears influenced by much more than sound. Though the approach and
results of [31] appear extremely promising in light of state of the art — it is
based on a perceptually-informed acoustic feature and a classification method
built upon sparse representations in exemplars, which has its own biological
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motivations, e.g., [19, 18] — we have not been able to reproduce their results
without reducing the number of classes from 10 to 5. We have shown in as much
detail possible the variety of decisions we have had to make in our work, and
provide all our code for independent verification: http://imi.aau.dk/~bst/

software/. Though our results point to a negative conclusion with regard to [31],
we have confirmed the observation of [47] that the performance of SRC appears
robust to the features used. We have found evidence that features modeled on the
primary auditory cortex do not perform significantly different from a feature that
is not perceptually based. Indeed, it does not make sense to us why perceptually-
based features would be more discriminative for the recognition of genre. Finally,
we have also shown that relaxing the constraints in the sparse representation
component of SRC improves classification accuracy.

As a postscript, we have found in further work [39] that we can increase the
mean accuracy of SRC with ATM in music genre recognition to 82% using the
Lyon model and downsampling the AS by a factor of 40 (from 22, 050 Hz to
551 Hz) before performing the modulation analysis. This performance increase,
however, appears irrelevant with respect to genre recognition. When we look
beyond the summary statistics, we see this method confidently applies quite
illogical classifications, e.g., “Why?” by Bronski Beat is supposedly Classical.
We find that its results are highly sensitive to equalization of the audio, and it
can be made to label the same piece of music differently if we shape the spectrum
in minor ways. Furthermore, we find that the music this method claims is highly
representative of a specific genre is not similarly labeled by a listener able to
recognize the same genre. Thus, SRC with ATM appears to be choosing labels
based on confounding factors of genre. Our future work aims at determining
these factors.
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