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Abstract. Digital sampling can be defined as the use of a fragment
of another artist’s recording in a new work, and is common practice in
popular music production since the 1980’s. Knowledge on the origins of
samples holds valuable musicological information, which could in turn
be used to organise music collections. Yet the automatic recognition of
samples has not been addressed in the music retrieval community. In this
paper, we introduce the problem, situate it in the field of content-based
music retrieval and present a first strategy. Evaluation confirms that our
modified optimised fingerprinting approach is indeed a viable strategy.
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1 Introduction

Digital sampling, as a creative tool in composition and music production, can
be defined as the use of a fragment of another artist’s recording in a new work.
The practice of digital sampling has been ongoing for well over two decades, and
has become widespread amongst mainstream artists and genres, including hip
hop, electronic, dance, pop, and rock [11]. Information on the origin of samples
holds valuable insights in the inspirations and musical resources of an artist.
Furthermore, such information could be used to enrich music collections, e.g. for
music recommendation purposes. However, in the context of music processing
and retrieval, the topic of automatic sample recognition seems to be largely
unaddressed [5, 12].

The Oxford Music Dictionary defines sampling as “the process in which a
sound is taken directly from a recorded medium and transposed onto a new
recording” [8]. As a tool for composition, it first appeared when musique concrète
artists of the 1950’s started assembling tapes of previously released music record-
ings and radio broadcasts in musical collages. The phenomenon reappeared when
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DJ’s in New York started using their vinyl players to repeat and mix parts of
popular recordings to provide a continuous stream of music for the dancing
crowd. The breakthrough of sampling followed the invention of the digital sam-
pler around 1980, when producers started using it to isolate, manipulate, and
combine portions of others’ recordings to obtain entirely new sonic creations [6,
13]. The possibilities that the sampler brought to the studio have played a role
in the appearance of several new genres in electronic music, including hip hop,
house music in the late 90’s (from which a large part of electronic dance music
originates), jungle (a precursor of drum&bass music), dub, and trip hop.

1.1 Motivations for Research on Sampling

A first motivation to undertake the automatic recognition of samples originates
in the belief that the musicological study of popular music would be incomplete
without the study of samples and their origins. Sample recognition provides
a direct insight into the inspirations and musical resources of an artist, and
reveals some details about his or her composition methods and choices made in
the production. Moreover, alongside recent advances in folk song [16] and version
identification [14] research, it can be applied to trace musical ideas and observe
musical re-use in the recorded history of the last two decades.

Samples also hold valuable information on the level of genres and commu-
nities, revealing cultural influences and dependence. Researchers have studied
the way hip hop has often sampled 60’s and 70’s African-American artists [6]
and, more recently, Bryan and Wang [2] analysed musical influence networks in
sample-based music, inferred from a unique dataset provided by the WhoSam-
pled web project. Such annotated collections exist indeed, but they are assembled
through hours of manual introduction by amateur enthousiasts. It is clear that
an automated approach could both widen and deepen the body of information
on sample networks.

As the amount of accessible multimedia and the size of personal collections
continue to grow, sample recognition from raw audio also provides a new way to
bring structure in the organization of large music databases, complementing a
great amount of existing research in this direction [5, 12]. Finally, sample recog-
nition could serve legal purposes. Copyright considerations have always been an
important motivation to understand sampling as a cultural phenomenon; a large
part of the academic research on sampling is focused on copyright and law [11].

1.2 Requirements for a Sample Recognition System

Typically observed parameters controlling playback in samplers include filtering
parameters, playback speed, and level envelope controls (‘ADSR’). Filtering can
be used by producers to maintain only the most interesting part of a sample.
Playback speed may be changed to optimise the tempo (time-stretching), pitch
(transposition), and/or mood of samples. Naturally, each of these operations
complicates their automatic recognition. In addition, samples may be as short
as one second or less, and do not necessarily contain tonal information. Moreover,
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given that it is not unusual for two or more layers to appear at the same time in a
mix, the energy of the added layers can be greater than that of the sample. This
further complicates recognition. Overall, three important requirements for any
sample recognition system should be: (1) The system is able to identify heavily
manipulated query audio in a given music collection. This includes samples that
are filtered, time-stretched, transposed, very short, tonal and non-tonal (i.e.
purely percussive), processed with audio effects, and/or appear underneath a
thick layer of other musical elements. (2) The system is able to perform this
task for large collections. Finally, (3) the system is able to perform the task in
a reasonable amount of time.

1.3 Scientific Background: Content-based Music Retrieval

Research in content-based music retrieval can be characterised according to speci-
ficity [5] and granularity [9]. Specificity refers to the degree of similarity between
query and match. Tasks with a high specificity mean to retrieve almost identical
documents, low specificity tasks look for vague matches that are similar with
respect to some musical properties. Granularity refers to the difference between
fragment-level and document-level retrieval. The problem of automatic sample
recognition has a mid specificity and very low granularity (i.e. very short-time
matches that are similar with respect to some musical properties). Given these
characteristics, it relates to audio fingerprinting.

Audio fingerprinting systems attempt to identify unlabeled audio by match-
ing a compact, content-based representation of it, the fingerprint, against a
database of labeled fingerprints [3]. Just like fingerprinting systems, sample
recognition systems should be designed to be robust to additive noise and several
transformations. However, the deliberate transformations possible in sample-
based music production, especially changes in pitch and tempo, suggest that the
problem of sample recognition is in fact a less specific task.

Audio matching and version identification systems are typical mid specificity
problems. Version identification systems assess if two musical recordings are dif-
ferent renditions of the same musical piece, usually taking changes in key, tempo
and structure into account [14]. Audio matching works on a more granular level
and includes remix recognition, amongst other tasks [4, 9]. Many of these systems
use chroma features [5, 12]. These descriptions of the pitch content of audio are
generally not invariant to the addition of other musical layers, and require the
audio to be tonal. This is often not the case with samples. We therefore believe
sample recognition should be cast as a new problem with unique requirements,
for which the existing tools are not entirely suitable.

2 Experiments

2.1 Evaluation Methodology

We now present a first approach to the automatic identification of samples [15].
Given a query song in raw audio format, the experiments aim to retrieve a ranked
list of candidate files with the sampled songs first.
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To narrow down the experiments, only samples used in hip hop music were
considered, as hip hop is the first and most famous genre to be built on sam-
ples [6] (though regarding sample origins, there were no genre restrictions). An
evaluation music collection was established, consisting of 76 query tracks and 68
candidate tracks [15]. The set includes 104 sample relations (expert confirmed
cases of sampling). Additionally, 320 ‘noise’ files similar to the candidates in
genre and length were added to challenge the system. Aiming at representa-
tiveness, the ground truth was chosen to include both short and long samples,
tonal and percussive samples, and isolated samples (the only layer in the mix)
as well as background samples. So-called ‘interpolations’, i.e. samples that have
been re-recorded in the studio, were not included, nor were non-musical samples
(e.g. film dialogue). This ground truth was composed using valuable information
from specialized internet sites, especially WhoSampled4 and Hip Hop is Read5.
As the experiment’s evaluation metric, the mean average precision (MAP) was
chosen [10]. A random baseline of 0.017 was found over 100 iterations, with a
standard deviation of 0.007.

2.2 Optimisation of a State-of-the-Art Audio Fingerprinting System

In a first experiment, a state-of-the-art fingerprinting system was chosen and
optimised to perform our task. We chose to work with the spectral peak-based
audio fingerprinting system designed by Wang [17]. A fingerprinting system was
chosen because of the chroma argument in Section 1.3. The landmark-based
system was chosen because of its robustness to noise and distortions and the
alleged ‘transparency’ of the spectral peak-based representation (Table 1): Wang
reports that, even with a large database, the system is able to correctly identify
each of several tracks mixed together.

Table 1. Strengths and weaknesses of spectral peak-based fingerprints in the context
of sample identification.

Strengths Weaknesses

– High proven robustness to noise
and distortions.

– Ability to identify music from only
a very short audio segment.

– ‘Transparent’ fingerprints: ability
to identify multiple fragments
played at once.

– Does not explicitly require tonal
content.

– Not designed for transposed or
time-stretched audio.

– Designed to identify tonal content
in a noisy context, fingerprinting
drum samples requires the oppo-
site.

– Can percussive recordings be rep-
resented by just spectral peaks at
all?

4 http://www.whosampled.com/
5 http://www.hiphopisread.com/

547



Automatic Identification of Samples in Hip Hop Music 5

As in most other fingerprinting systems, the landmark-based system consists
of an extraction and a matching component. Briefly summarized, the extraction
component takes the short time Fourier transform (STFT) of audio segments
and selects from the obtained spectrogram a uniform constellation of prominent
spectral peaks. The time-frequency tuples with peak locations are paired in 4-
dimensional ‘landmarks’, which are then indexed as a start time stored under a
certain hash code for efficient lookup by the matching component. The matching
component retrieves for all candidate files the landmarks that are identical to
those extracted from the query. Query and candidate audio segments match if
corresponding landmarks show consistent start times [17].

A Matlab implementation of this algorithm has been made available by Ellis6.
It works by the same principles as [17], and features a range of parameters
to control the implementation-level operation of the system. Important STFT
parameters are the audio sample rate and the FFT size. The number of selected
spectral peaks is governed by the desired density of peaks in the time domain and
the peak spacing in the frequency domain. The number of resulting landmarks
is governed by three parameters: the pairing horizons in the frequency and time
domain, and the maximum number of formed pairs per spectral peak.

A wrapper function was written to slice the query audio into short fixed
length chunks, overlapping with a hop size of one second, before feeding it to the
fingerprinting system. A distance function is also required for evaluation using
the MAP. Two distance functions are used, an absolute distance da = 1

m+1 ,
function of the number of matching landmarks m, and a normalized distance
dn = l−m

l , weighted by the number of extracted landmarks l.
Because of constraints in time and computational power, optimising the en-

tire system in an extensive grid search would not be feasible. Rather, we have
performed a large number of tests to optimise the most influential parameters.
Table 2 summarizes the optimisation process, more details can be found in [15].
The resulting MAPs were 0.228 and 0.218, depending on the distance functions
used (note that both are well beyond the random baseline mentioned before).
Interestingly, better performance was achieved for lower sample rates. The opti-
mal density of peaks and number of pairs per peak are also significantly larger
than the default values, corresponding to many more extracted landmarks per
second. This requires more computation time for both extraction and matching,
and a requires for a higher number of extracted landmarks to be stored in the
system’s memory.

2.3 Constant Q Fingerprints

The MAP of around 0.22 is low for a retrieval task but promising as a first
result. The system retrieves a correct best match for around 15 of the 76 queries.
These matches include both percussive and tonal samples. However, due to the
lowering of the sample rate, some resolution is lost. Not only does this discard
valuable data, the total amount of information in the landmarks also goes down

6 http://labrosa.ee.columbia.edu/matlab/fingerprint/
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Table 2. Some of the intermediate results in the optimisation of the audio fingerprint-
ing system by Wang as implemented by Ellis [15]. The first row shows default settings
with its resulting performance.

pairs/pk pk density pk spacing sample rate FFT size MAPn MAPa

(s−1) (bins) (Hz) (ms) (dn) (da)

3 10 30 8,000 64 0.114 0.116
10 10 30 8,000 64 0.117 0.110
10 36 30 8,000 64 0.118 0.133
10 36 30 2,000 64 0.176 0.162
10 36 30 2,000 128 0.228 0.218

as the range of possible frequency values decreases. We now did a number of
tests using a constant Q transform (CQT) [1] instead of a Fourier transform.
We would like to consider all frequencies up to the default 8,000 Hz but make
the lower frequencies more important, as they contributed more to the best
performance so far. The constant Q representation, in which frequency bins are
logarithmically spaced, allows us to do so. The CQT also suits the logarithmic
representation of frequency in the human auditory system.

We used another Matlab script by Ellis7 that implements a fast algorithm
to compute the CQT and integrated it in the fingerprinting system. A brief
optimisation of the new parameters returns an optimal MAP of 0.21 at a sample
rate of 8,000 Hz. This is not an improvement in terms of the MAP, but loss of
information in the landmark is now avoided (the amount of possible frequency
values is restored), amending the system’s scalability.

2.4 Repitching Fingerprints

In a last set of tests, a first attempt was made to deal with repitched samples.
Artists often time-stretch and pitch-shift samples by changing their playback
speed. As a result, the samples’ pitch and tempo are changed by the same factor.
Algorithms for independent pitch-shifting and time-stretching without audible
artifacts have only been around for less than a decade, after phase coherence
and transient processing problems were overcome. Even now, repitching is still
popular practice amongst producers, as inspection of the ground truth music
collection confirms. In parallel to our research [15], fingerprinting of pitch-shifted
audio has been studied by Fenet et al. [7] in a comparable way, but the approach
does not consider pitch shifts greater than 5%, and does not yet deal with any
associated time-stretching.

The most straightforward method to deal with repitching is to repitch query
audio several times and perform a search for each of the copies. Alternatively,
the extracted landmarks themselves can also be repitched, through the appro-
priate scaling of time and frequency components (multiplying the time values

7 See http://www.ee.columbia.edu/~dpwe/resources/matlab/sgram/ and http://

labrosa.ee.columbia.edu/matlab/sgram/logfsgram.m
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Table 3. Results of experiments using repitching of both the query audio and its
extracted landmarks to search for repitched samples.

N ∆R r MAPn MAPa

(st) (st)

- - 0 0.211 0.170
0 - 0.5 0.268 0.288
5 1.0 0.5 0.341 0.334
9 0.5 0.5 0.373 0.390

and dividing the frequency values, or vice versa). This way the extraction needs
to be done only once. We have performed three tests in which both methods
are combined: all query audio is resampled several times, to obtain N copies,
all pitched ∆R semitones apart. For each copy of the query audio, landmarks
are then extracted, duplicated and rescaled to include all possible landmarks
repitched between r = 0.5 semitones up and down. This is feasible because of
the finite resolution in time and frequency.

The results for repitching experiments are shown in Table 3. We have ob-
tained a best performance of MAPn equal to 0.390 for the experiment with
N = 9 repitched queries, ∆R = 0.5 semitones apart every query. This results in
a total searched pitch range of 2.5 semitones up and down, or ±15%. Noticeably,
a MAP of 0.390 is low, yet it is in the range of some early version identification
systems, or perhaps even better [14].

3 Discussion

To the best of our knowledge, this is the first research to address the problem of
automatic sample identification. The problem has been defined and situated in
the broader context of sampling as a musical phenomenon and the requirements
that a sample identification system should meet have been listed. A state-of-the-
art fingerprinting system has been adapted, optimised, and modified to address
the task. Many challenges have to be dealt with and not all of them have been
met, but the obtained performance of 0.39 is promising and unmistakably better
than the precision obtained without taking repitching into account [15]. Overall,
our approach is a substantial first step in the considered task.

Our system retrieved a correct best match for 29 of the 76 queries, amongst
which 9 percussive samples and at least 8 repitched samples. A more detailed
characterisation of the unrecognised samples is time-consuming but will make a
very informative next step in future work. Furthermore, we suggest to perform
tests with a more extensively annotated dataset, in order to assess what types
of samples are most challenging to identify, and perhaps a larger number of
ground truth relations. This will allow to relate performance and the established
requirements more closely and lead to better results, paving the road for research
such as reliable fingerprinting of percussive audio, sample recognition based on
cognitive models, or the analysis of typical features of sampled audio.
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