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Abstract. In musical performances with expressive tempo modulation,
the tempo variation can be modelled as a sequence of tempo arcs. Pre-
vious authors have used this idea to estimate series of piecewise arc
segments from data. In this paper we describe a probabilistic model for
a time-series process of this nature, and use this to perform inference of
single- and multi-level arc processes from data. We describe an efficient
Viterbi-like process for MAP inference of arcs. Our approach is score-
agnostic, and together with efficient inference allows for online analysis
of performances including improvisations, and can predict immediate fu-
ture tempo trajectories.
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1 Introduction

In various types of musical performance, one component of the musical expression
is conveyed in the short-term manipulation of tempo, with tempo modulation
reflecting musical phrase structure [7, 9]. This has motivated various authors to
construct automatic analyses of the arc-shaped tempo modulations in recorded
musical performances, with or without score-derived information to supplement
the analysis [7, 9, 5]. (See also [6] who fit piecewise linear arcs to rock and jazz
data, applying similar techniques but to genres in which the underlying tempo
is held more fixed.)

Machine understanding of tempo, including its variability, can be useful
in live human-machine interaction [1, 8]. However most current online tempo-
tracking systems converge to an estimate of the current tempo, modelling expres-
sive variations as deviations rather than as components of an unfolding tempo
expression. In this paper we work towards the understanding of tempo arcs in a
real-time system, paving the way for automatic accompaniment systems which
follow the expressive tempo modulation of players in a more natural way.

We also consider tempo arcs within a probabilistic framework. Previous au-
thors have approached piecewise arc estimation using Dynamic Programming
(DP) with cost functions based on squared error [5, 6]. These are useful and can
provide efficient estimation, but by setting the problem in a probabilistic frame-
work (and providing the corresponding Viterbi-like DP estimator), we gain some
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advantages: prior beliefs about the length and shape of arcs can be expressed co-
herently as prior distributions; measurement noise is explicitly modelled; and the
goodness-of-fit of models is represented meaningfully as posterior probabilities,
which allows for model comparison as well as integration with other workflow
components which can make use of estimates annotated with probability values.
Note that while we describe a fully probabilistic model, for efficient inference we
will develop a Maximum A Posteriori (MAP) estimator, which returns only the
maximum probability parameter settings given the priors and the data.

In the following we will describe our model of arcs in time-series data, and de-
velop an efficient MAP estimation technique based on least-squares optimisation
and Viterbi-like DP. The approach requires some kind of unsmoothed instanta-
neous tempo estimate as its input, which may come from a tempo tracker or
from a simple measurement such as inter-onset interval (IOI). We will then dis-
cuss how the estimator can be used for immediate-future tempo prediction, and
how it can be applied to multiple levels simultaneously. Finally we will apply
the technique to tempo data from three professional piano performances, and
discuss what the analysis reflects in the performances.

2 Modelling and Estimation

For our basic model, we consider tempo to evolve as a function of metrical
position (beat number) x in a musical piece as a series of connected arcs, where
each arc’s duration, curvature and slope are independently drawn from prior
distributions (to be described shortly). Our model is deliberately simple, and
agnostic of any score information that might be available. To sample from this
model, we pick an initial tempo at the starting time, then define a single upwards
tempo arc which starts from that point, and the tempo trajectory (speeding up
and then slowing down) over a number of measures. Any tempo data which may
be measured during this interval is modelled as being drawn from the arc plus
some amount of gaussian noise. Once the ending breakpoint of this arc is reached,
the next arc is sampled from the same priors, using the ending tempo as the new
starting tempo. Hence each tempo arc is conditionally independent of all previous
observations once the starting tempo is determined, i.e. once the previous arc’s
parameters are fixed. This assumption of conditional independence is slightly
unrealistic, since it ignores long-range relationships between tempo arcs, but it
accounts for the most important interactions and makes inference tractable.

Our basic model is also only single-level, assuming that a single arc con-
tributes to the current tempo at any moment, rather than considering for exam-
ple contributions from multiple timescales such as piece-level, movement-level,
phrase-level and bar-level combined. In Section 2.4 we will consider a simple
multi-scale extension of our technique, which we will apply in our analysis of
piano performance data. (For an alternative approach in which various compo-
nents can be simultaneously active see [7].)
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2.1 Fitting a Single Arc

To fit a single arc shape to data, one can use standard quadratic regression,
fitting a function of the form

f(x) = a+ bx+ cx2, (1)

and minimising the L2 prediction error over the supplied data for y ≈ f(x). In
the Bayesian context, we wish to incorporate our prior beliefs about the regres-
sion parameters (here a, b and c), which is related to the optimisation concept
of regularisation, the class of techniques which aims to prevent overfitting by
favouring certain parameter settings. In fact, a gaussian prior on a regression
parameter can be shown to be equivalent to the conventional L2-norm regulari-
sation of the parameters [2, p. 153], summarised as:

regularisation coefficient =
variance of gaussian noise

variance of gaussian prior
. (2)

This equivalence is useful because it allows us to use common convex optimisa-
tion algorithms to perform the equivalent regularised least squares optimisation,
and they will yield the MAP estimate for the probabilistic model.

However, in this context a standard gaussian prior is not exactly what we
require, since we are expecting upwards arcs and not troughs – we are expecting
c in Equation 1 to be negative. A more appropriate choice of prior might be a
negative log-gaussian distribution, which allows us to specify a “centre of mass”
for the arc shapes (expressed through the log-mean and log-standard-deviation
parameters), yet better represents our expectation that tempo arcs will always
have negative curvature, (almost) flat and extremely strongly curved arcs being
equally rare.

The unconventional choice of prior might seem to remove the equivalence of
the MAP regression technique with standard regularised least squres. Yet if we
rewrite our function to be

f(x) = a+ bx− ecx2, (3)

then our prior belief about this modified parameter c becomes a gaussian, yield-
ing a negative-log-gaussian in combination with our function. In addition, we
will use a standard gaussian prior on b. We could do the same for a but instead
we will use an improper uniform prior, for reasons which will be described in
Section 2.2. Therefore, our priors for Equation 3 will be gaussian priors on b and
c, which can easily be converted to the equivalent L2-regularisation terms for
optimisation.

The strength of the regularisation (the value of the regularisation coefficient)
reflects the specificity of our priors versus our data – specifically, the regularisa-
tion parameter is given by the noise variance divided by the prior variance [2, p.
153]. Again, we see how the probabilistic setting helps to ground our problem,
connecting the strength of the regularisation directly to our prior beliefs about
the model and the data rather than manually-tuned parameters.
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Fig. 1. A selection of piecewise arc fits performed on a synthetic dataset, with
manually-specified breakpoint locations. The “logMAP” (log of MAP probability) val-
ues quoted with each one indicate the relative likelihood assigned to each fit, given the
prior parameters chosen. (Prior parameters are the same for each of these plots.) The
best-fitting plots have correspondingly higher (less negative) logMAP values.

2.2 Fitting Multiple Arcs

If a time-series is composed of multiple arcs and the breakpoints are known,
then fitting multiple arcs is as simple as performing the above single-arc fit for
each subsection of the time series (as in Figure 1). Additionally, one should take
care of the arc’s dependence upon its predecessor (to enforce that they meet
up), which is not shown in these plots. In our case, we want to estimate the
breakpoint locations as well as the arc shapes between those breakpoints. This
can be performed by iterating over all possible combinations of one breakpoint,
two breakpoints, three (. . . ) for the dataset, and choosing the result with the
lowest cost (the highest posterior likelihood).

The Bayesian setting makes it possible to compare these different alterna-
tives (e.g. one single arc vs. one arc for every datapoint) without having to add
arbitrary terms to counter overfitting; instead, we specify a prior distribution
over the arc durations, which in combination with the other priors and data
likelihoods yields a MAP probability for any proposed set of arcs. In this paper
we choose a log-normal prior distribution over arc durations. See Figure 1 for
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some examples of different sets of arcs fitting to a synthetic dataset, and the
posterior (log-)probabilities associated.

In order for only a single tempo value to exist at each breakpoint (and not
a discontinuous leap from one tempo to another), we fit each arc under the
constraint that its starting value equals the ending value of the previous arc. This
removes one degree of freedom from the function to be fit (Equation 3) which
otherwise has three free parameters. We implement this by constraining the value
of a in the optimisation so that the function evaluates to the predetermined
value at the appropriate time-point. The least-squares optimisation therefore
only operates on b and c.

2.3 Viterbi-like Algorithm

The number of possible combinations of arcs for even a small time-series (such as
Figure 1) grows quickly very large, and so it is impractical to iterate all combina-
tions. This is where Dynamic Programming (DP) can help. Here we describe our
DP algorithm, which, like the well-known Viterbi algorithm, maintains a record
of the most likely route that leads to each of a set of possible states. Rather
than applying it to the states of a Hidden Markov Model, we apply it to the
possibility that each incoming datum represents a breakpoint.

Assume that the first incoming datum is a breakpoint. (This assumption
can be relaxed, in a similar way to the treatment of the final datum which we
consider later.) Then, for each incoming datum (xn, yn), we find what would
be the most likely path if it were certainly a breakpoint. We do this by finding
the most appropriate past datum (xn−k, yn−k) which could begin an arc to the
current datum – where the appropriateness is judged from the MAP probability
of said arc, combined with the MAP probability of the whole multiple-arc history
that leads up to that past datum (recursively defined).

With our lognormal prior on the arc lengths (and with many common choices
of prior), the probability mass is concentrated at an expected time-scale, and
very long arcs are highly improbable a priori. Hence in practice we truncate the
search over potential previous arc points to some maximum limit K (i.e. k ≤ K).

Thus, for every incoming data point we perform no more than K single-
arc fits, then store the details of the chosen arc, the MAP probability so far,
and a pointer back to the datapoint at the start of the chosen single arc. The
simplest way to choose the overall MAP estimate is then to pick another definite
breakpoint (for example, the last datum if the performance has finished) and
backtrack from there to recover the MAP arc path.

Complexity The time complexity of the algorithm depends strongly on that
of the convex optimisation used to perform a single-arc fit. Assume that the
complexity of a single-arc fit is proportional to the number of data points k
included in the fit, where k ≤ K. Then for each incoming data point a search
is performed for one subset each of 2, 3, . . . K data points, which essentially
yields an order O(K2) process. For online processing this is manageable if K is

638



6 Dan Stowell and Elaine Chew

not too large. Analysing a whole dataset of M points then has time complexity
O(K2M). (Compare this to the broadly similar complexity analysis of [6].) The
space complexity is simply O(M), or O(K) if the full arc history since the very
beginning does not need to be stored. This is because a small fixed amount of
data is stored per datapoint.

Predicting Immediate Future Arcs As discussed, if we know the perfor-
mance has finished then we can find the Viterbi path leading to a breakpoint
at the final data point received. However, we would also like to determine the
most likely set of arcs in cases where the performance might not have finished
(e.g. for real-time interactive systems), and thus where we do not wish to assert
that the latest datum is a breakpoint. We wish to be able to estimate an arc
which may still be in progress. If we can, this has a specific benefit of predicting
the immediate future evolution of the tempo modulations (until the end of the
present arc), which may be particularly useful for real-time interaction.

We can carry this out in our current approach as follows. Since an arc’s du-
ration (as well as the curve-fit) affects its MAP probability, in the case where
the latest arc may or may not be terminating we must iterate over the arc’s
possible durations and pick the most likely. To do this we choose a set of fu-
ture time-points as candidate breakpoints, xn+1 . . .xn+J (e.g. an evenly-spaced
tatum grid of J = K future points). Then we supply these data to the Viterbi
update process exactly as is done with actual data, but with no associated y
values. These “hypothetical” Viterbi updates will use these time-points to de-
termine the arc-lengths being estimated, and in normalising the data subset, but
will not include them in the arc-fitting process. It will therefore yield a MAP
probability estimate for each of the time-points as if an arc extended from the
real data as far as this hypothetical breakpoint. Out of these possibilities, the
one with the highest MAP probability is the MAP estimate for an arc which in-
cludes the latest real datum and some portion of the hypothetical future points.
(The hypothetical Viterbi updates are not preserved: if more data comes in, it
is appended to the Viterbi storage corresponding only to the actual data.)

2.4 Multi-scale Estimation

The model we describe operates at one level, with expected arc durations given
by the corresponding prior. Our model is adaptable to any time-scale by simply
adapting the prior. It does not however automatically lend itself to simultaneous
consideration of multiple active timescales.

Multi-scale analysis can be carried out by analysing a dataset with one
timescale, then analysing the residual at a second timescale. This residual-based
decomposition has been used previously in the literature (e.g. [9]); it requires
a strong hierarchical assumption that the arcs at the first timescale do not de-
pend at all on those at the second timescale, while the second is subordinate
to the first. We consider this to be unrealistic, since there may well be interac-
tions between the different timescales on which a performer’s expression evolves.
However this assumption leads to a tractable analysis.
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Note also that this approach to multi-scale estimation requires the first anal-
ysis to be completed (so that the residual is known) before the second scale can
be analysed. Some DP approach may be possible to enable both to be calcu-
lated online, but we have not developed that here. For the present work, the
single-scale Viterbi tracking is applicable and useful for online tracking, while
multi-scale analysis is an offline process, which we will next apply to modelling
of pre-recorded tempo data.

3 Analysis of Expressive Piano Performance

We applied our analysis to an existing set of annotations of three performances of
Beethoven’s Moonlight Sonata. The annotations were provided by Elaine Chew
and have previously been analysed by Chew with reference to observations noted
by Jeanne Bamberger [4]. For each of three well-known performances of the
piece (by Daniel Barenboim (1987), Maurizio Pollini (1992) and Artur Schnabel
(2009)), the first 15 bars have been annotated with note onset times, which
correspond to regular triplet eighth-note timings.

We implemented the algorithm in Python, using the scipy.optimize.fmin

optimiser to solve individual regressions. Source code is available.1 (Note that
this development implementation is not generally fast enough for real-time use.)

Instantaneous tempo was derived from these inter-onset intervals, then anal-
ysed using a two-pass version of our algorithm: first the data was analysed using
an arc-duration prior centred on four bars; then the residual was analysed us-
ing an arc-duration prior centred on one bar. This choice of timescales is a
relatively generic choice which might reasonably be considered to reflect a per-
former’s short-term and medium-term state; however it might also be said to be
a form of basic contextual information about the relevant timescales in the cur-
rent piece. For the current study, we confine ourselves to priors with log-normal
shapes, though an explicitly score-derived or corpus-derived prior could have a
more tailored and perhaps multimodal shape.

Figure 2 shows the results. The analyses show some notable similarities and
differences, some of which we will now discuss.

The longer time scale analysis (centred on four-bar durations) immediately
highlights a difference between the performances: Pollini’s performance appears
to contain relatively little variation on this level, as the fit yields long and shallow
arcs, with breakpoints near positions 48, 96 and 168 (structurally important po-
sitions; 96 is where the key-change occurs). On the other hand, both Barenboim
and Schnabel’s tempo curves exhibit fairly deep and varied arcs. Schnabel’s per-
formance exhibits the most dramatic variation in the first four bars until around
measure 48: this first four-bar section corresponds to the opening statement of
the basic progression, before the melody enters in the fifth bar (and the under-
lying progression repeats). Bamberger described Schnabel as performing them
“as if in one long breath” (quoted in [4]), not quite reflected in our analysis.

1 https://code.soundsoftware.ac.uk/projects/arcsml
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On the shorter time scale, the analysis tends to group phrases into one-bar or
two-bar arcs. Aspects of the musical structure are reflected in the arcs observed.
Sections of the melody which lend themselves to two-bar phrasing (e.g. 72–96)
are generally reflected in longer arcs crossing bar lines. Conversely, in the region
96–132 the change to the new key unfolds as each new chord enters at the start
of a bar, and the tempo curves for all three performers reflect an expressive focus
on this feature, with one-bar arcs which are more closely locked to the bar-lines
than elsewhere. Note that in this section Schnabel matches Pollini in exhibiting
a long and shallow arc on the slow timescale, with all the expressive variation
concentrated on the one-bar arcs.

Over the excerpt generally, the breakpoints for Schnabel are further away
from the barline than the others, as was observed in Chew’s manual analysis.

We have extended the plots slightly beyond the 180 annotated data points,
to illustrate the immediate-future predictions made by the model. (This is done
for both timescales, though only the longer timescale (in red) shows noticeable
extended arcs.) All the performers, and especially Schnabel, exhibit an accel-
eration towards the end of the annotated data, reflected in the predictions of
an upward arc followed by a gradual slowing over the next bar. This type of
prediction is plausible for such expressively-timed music.

To illustrate the effect that the prior parameters have upon the regression,
Figure 3 shows the same analysis as Figure 2 but with the standard deviation
of the noise prior set at 4.0 rather than 3.0. The increase in the assumed noise
variance leads the algorithm to “trust” the data less and the prior slightly more
(cf. Equation 2). In our example, some of the breakpoints for the long-term
arcs (in red) have changed, losing some detail, though most of the detail of the
second-level analysis (in blue) is consistent.

4 Conclusions

We have described a model with similarities to some previous piecewise-arc mod-
els of musical expression, but with a Bayesian formulation which facilitates model
comparison and the principled incorporation of prior beliefs. We have also de-
scribed an efficient Viterbi-like Dynamic Programming approach to estimation
of the model from data. The approach provides scope to apply the model to real-
time score-free performance tracking, including prediction of immediate future
tempo modulation. Source code for the algorithm (in Python) is available.

We have applied the model in a two-level analysis to data from expressive
piano performance, illustrating the algorithm’s capacity to operate at different
time-scales, and to recover expressive arc information that corresponds with
some musicological observations regarding phrasing and timing.

Further research would be needed to develop a model considering multiple
simultaneously-active levels of expression which can be applied online as with our
single-level Viterbi-like algorithm. Similar arcs have been observed and analysed
in loudness information extracted from performances [3]. It would also be useful
to combine loudness information with tempo information in this model.
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Two-level: Pollini (logMAPs: -535.493, -576.114)
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Fig. 2. Two-level analysis of performances by each of three pianists (Barenboim,
Pollini, Schnabel). In each plot, the first long-scale fit (centred on the four-bar
timescale) is depicted in red, and the second shorter-scale fit (centred on the one-
bar timescale) is given in blue. The second fit is pre-offset by the first, meaning the
blue arcs display the combined model produced by both timescales combined. Anno-
tated data finish at tatum 180; where the MAP choice extends beyond that, we show
the predicted immediate future arc.
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Two-level: Schnabel (logMAPs: -672.86, -654.782)

Fig. 3. As Figure 2 but with the standard deviation of the noise prior set at 4.0 rather
than 3.0.
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