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Abstract. The paper describes two novel variants of the use of the var-
iogram as summarizing tool for the MFCCs. A full variogram calculated
on the second MFCC and a reduced variogram calculated on a subset of
distance lags on the whole MFCCs matrix (first coefficient excluded), are
proposed as tools to synthesize the timbre information of the MFCCs, for
music similarity. Also, four different weighting functions are tested for the
calculus of the (Euclidean) distance among the songs. The performance
of the methods is evaluated by the application of the pseudo-objective
evaluation of the MIREX AMS task, and compared with the scores of
the methods submitted to the MIREX AMS 2011.
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1 Introduction

The massive improvement of the Internet communication technology over the
last years allowed the fast development of on-line games, multimedia playing and
digital content sharing. The advances in the distribution of music contents led
to the urgent need of a proper storage, labelling and indexation of the material,
with the aim of an efficient access and retrieving of the items. One of the most
demanded task is the automatic recommendation of music contents, aimed to
help the user to choose a track with the highest degree of similarity with some
defined references.

One of the fields where the MIR community is currently investing more re-
sources are the so called content-based music recommendation systems where
music similarity is evaluated on the basis of the calculus of a number of descrip-
tors from time and frequency domain, and the derivation of some kind of feature
patterns that are used as signature of the songs.

One of the most successfully used features to describe the spectral content
of an audio signal are the Mel Frequency Cepstral Coefficients (MFCCs) [14].
These short-term spectral-based features are popularly employed to summarize
the timbre content of the song and they are involved in most of the known
algorithms for music similarity.

The MFCCs are calculated according to a recognized standard procedure:
1) calculus of the short-term spectrogram, 2) mapping of the spectrogram on

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012) 
19-22 June 2012, Queen Mary University of London 
All rights remain with the authors.

552



2 Simone Sammartino, Lorenzo J. Tardón, and Isabel Barbancho

the Mel scale, through the application of a Mel frequencies bank filter, 3) trans-
formation of the filtered spectrum to decibels and finally 4) compression of the
resulting matrix by the application of the Discrete Cosine Transform.

Due to the own scheme of calculation of the MFCCs, the resulting descrip-
tor is a matrix whose size depends both on the number of coefficients (fixed a
priori) and the set of chunks in which the song has been fractioned during the
windowing of the spectrogram. For this reason, the use of the MFCCs is usually
associated with some kind of clustering of the coefficients, in order to represent
the timbre descriptor as a fixed-size compressed matrix, to be employed directly
as a standardized signature for the audio signals.

Logan and Salomon [10], employed the popular K-means method to clus-
ter the MFCCs and used the means and covariance matrices of the centroids
to define the song signature. Pampalk [13] proposed the use of the Gaussian
Mixture Models (GMM) and the Expectation-Maximization (EM) approach,
by modelling the probability distribution functions of the coefficients vectors.
Aucouturier and Pachet [1] employed the Monte Carlo approach as clustering
technique, Mandel and Ellis [11] used only one cluster from GMM, while Tzane-
takis and Cook [17] simply extracted the mean and variance from each vector of
Mel coefficients. In [15], Sammartino et al proposed the use of the variogram for
MFCCs modelling. In this work, two novel variants of the calculus of the vari-
ogram are analyzed and their performance is evaluated with different setups.

The article is organized as follows: after this brief introduction on the mu-
sic similarity framework, the use of the variogram as summarizing tool for the
MFCCs is detailed in Section 2. The results of the evaluation of the methods
proposed are presented in Section 3 and finally, some conclusions are drawn in
Section 4.

2 The variogram

The variogram is a very popular tool in Geostatistics, widely employed to model
the spatial continuity of environmental variables. Isaaks and Srivastava [5] affirm
that “Two data close to each other are more likely to have similar values than two
data that are far apart.” This characteristic is quantitatively defined as spatial
continuity, referring to the spatial correlation of spatial variables.

2.1 The spatial variogram

Let z(x), with x = 1, . . . , n represents a set of n (regularly) sampled observations
of a spatial phenomenon. The term x stands for the vector of spatial bi- or three-
dimensional coordinates of the samples (generally unidimensional in the case of
temporal variables).

One way to measure the spatial continuity of the samples is to observe how
they behave when paired by their reciprocal distance. The h-scatter plot fulfills
this target. It is the scatter plot of samples paired by a specific value of distance
h [5].
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Novel use of the variogram for MFCCs modeling 3

In Figure 1, three examples of h-scatter plots are shown. The samples are
paired by a three distance vectors of h = {1, 2, 5} (more precisely, it is h =
{1, 2, 5} in both x and y axis), and represented as points scattered over the
bisector. Additionally, the h-scatter plot of the points coupled with themselves
(h = 0) is presented (Fig. 1(a)). The bisector represents the geometrical locus
of the pairs of samples separated by zero distance (all the samples paired with
themselves).
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(a) The h-scatter plot calculated with
samples paired with themselves (h = 0).
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(b) The h-scatter plot calculated with
samples paired at a distance h = 1.
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(c) The h-scatter plot calculated with
samples paired at a distance h = 2.
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(d) The h-scatter plot calculated with
samples paired at a distance h = 5.

Fig. 1. h-scatter plots of a set of regularly gridded spatial samples. The first plot is
perfectly aligned with the diagonal. In fact the act of pairing samples at distance h = 0
means comparing each samples with itself. In the other plots the increase of the spread
of the cloud is evident. In each plot, a small graph showing the pairing of the first
sample is shown. The analysed data are a subset of the topographic data, provided by
the US National Geophysical Data Centre (NOAA).

Following the definition of the spatial continuity, we can model how the
spread of the clouds of points varies with the distance h. The greater the distance
of the paired points, the fatter the cloud and the larger the difference between the
samples of each pair. Therefore, it can be assumed that the spread of the cloud
will range between zero, when the distance is null and the samples are paired
with themselves, and a certain maximum extent, reached when the distance of
the samples is large enough to fill the axes. At that point, even increasing the
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distance, the spread of the cloud will not change substantially. The spread will
achieve a steady value, with small oscillation around it. The paired samples will
reach their reciprocal independence.

The way the spread of the cloud varies over the distance, resumes the law
of spatial continuity of the samples analysed [5]. Three analogue approaches are
employed in geostatistics, to model this law:

– The correlation coefficient of the pairs, whose variation with the distance is
defined as the correlogram.

– The covariance and the corresponding covariance function.
– The moment of inertia and the corresponding variogram.

The general definition of the moment of inertia of two paired variables x and
y, follows [5]:

T =
1

2n
·

n∑

i=1

(xi − yi)
2 (1)

where the factor 1
2 refers to the perpendicular distance of the n samples to the

diagonal.
Hence, the empirical variogram, or semivariance, of two paired variables (z(x)

and z(x + h) separated by the distance h is defined as follows:

γ(h) =
1

2n(h)
·

n(h)∑

i=1

(z(xi) − z(xi + h))2 (2)

where the number of pairs n is represented as a function of h, because their
availability changes with the distance h. The term h is usually referred as the
lag.

A typical variogram curve reflects the empirical assumption made for the h-
scatter plot. It is zero at the origin, it increases with the lag distance and starts
to flatten around a certain value of variance. In Figure 2, a typical empirical
variogram is shown, together with the covariance function.

For interpolation purposes, the approximation of the law of spatial continuity
for all the lags is often demanded. Then, the empirical variogram is usually asked
to be fitted by some theoretical analytic models.

To infer the theoretical behavior of the experimental variogram, the samples
of the spatial variable are considered as the realizations of a random function,
a random variable, and a series of assumptions are drawn. In particular, the
assumption on the stationarity of the random function is done. In conditions
of a second order stationarity [18], the empirical variogram can be conveniently
fitted by a family of functions (bounded authorized models), that allow to infer
the information of the spatial continuity over the entire field. Two of the most
popular models used for variogram fitting are the exponential and the spherical
model [5].

A direct relation between the covariance function and the variogram can be
defined. The covariance function starts at the variance of the random function
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Fig. 2. A typical empirical variogram and its corresponding covariance function.

and decreases with the distance, tending to zero, when the samples of the random
variable are sufficiently separated to be independent. Conversely, the variogram
starts at zero, where the samples are at identical location and its variance is
null, and increases with the distance, revealing the raise of the independence of
the variable. It tends to the maximum degree of independence, that is the global
variance of the random function [15].

The fit of the empirical variogram with the analytic models allows to parametrize
the variogram function. Two main features are typically retrieved as descriptors
of the shape of the theoretical variogram model: the sill, that is the variance at
which the curve tends and the range, the lag value at which the sill is reached.
A third very important parameter is the so called nugget effect. As seen, the
theoretical value of the variogram at h = 0 is zero, because of the comparison
of two different random variables at identical locations. However, in a practical
experimental framework, a discontinuity of the empirical variogram at the short
scale can be observed. This phenomenon is referred as the small scale variability
[8]. The nugget effect is taken into account in the fit of the theoretical models
by summing a certain quantity to the main model, such to shift the first lag to
a level of variance higher than zero and cope with the small scale variability.

In Figure 3, a typical fitted theoretical model is shown, together with its
main parameters.

2.2 The temporal variogram

Despite the variogram was born in a spatial statistics framework, it can be
conveniently applied to time series data. Many authors [7, 4, 6] have dealt with
the use of the variogram, coupled to classical signal processing techniques, as a
tool for periodicity analysis of signals and time series analysis.

In the case of temporal signal processing, the distance parameter h is unidi-
mensional and it represents the time lag among the samples. Unlike the spatial
framework, where the samples are (regularly or not) distributed in the domain,
in a temporal framework all the lag values are covered. The pairs availability is
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Fig. 3. An empirical variogram fitted by the analytical model, with the corresponding
parameters.

a linear descending function with its maximum at lag h = 1, where the number
of available pairs is n − 1 (where n represents the number of audio samples), ad
its minimum, at lag h = n − 1, where the number of available pairs is 1.

For this reason, the reliability of the variogram values decreases with the lag.
The variogram values estimated for the first lags are much more reliable than
the last ones. Fortunately, the most revealing part of a variogram is indeed at
the small scale, where it varies more, while a less interesting and rather constant
behaviour is expressed at larger scales, just where the pairs availability decreases
linearly and the estimation of this measure is less reliable.

In Figure 4, a typical temporal variogram is shown.
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Fig. 4. A Typical temporal variogram. The experimental variogram is fitted by an
exponential model.
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Finally, when applied to audio signals, the variogram curve typically shows
a periodical behaviour. In fact, the squared difference among the samples is
affected by the periodicity of the signal itself and it is faithfully reflected by the
variogram.

2.3 Variogram for MFCCs modeling

In this work, the temporal variogram is calculated on the MFCCs, as a tool for
modelling the variation of the cepstral descriptor over the time fragments. A
variant of the variogram proposed in [15] and a series of setups for the calculus
of the distance are tested.

For the calculus of the MFCCs, the input signal is fractioned in a series of
chunks with 1024 samples each, no windows overlap is employed and a hamming
function is applied to each frame. The number of Mel filters (the triangular
filterbank) is 40, while the number of DCT coefficients is 13. With such kind of
configuration, one minute of audio signal corresponds to an MFCCs matrix of
13 x 2583 samples.

When the variogram is applied to the MFCCs, the lags values correspond
to a temporal distance in terms of number of chunks in which the song has
been fractioned. In order to achieve a standard measure to be employed in the
quantitative comparison among the songs, each variogram is normalized by the
global variance of the MFCC analysed. The result is an empirical variogram with
an asymptotic tendency towards a reference variance of one. This is defined as
standardized variogram [15].

The variogram is applied to the ISMIR 2004 Audio Description Contest (pre-
MIREX) database for genre classification [2]: a set of about 700 songs, whose
minimum and maximum duration was considered as 5 seconds and 5 minutes,
respectively.

Full variogram The so called full variogram is the variogram of the second
MFCC, calculated from lag 1 to 200. That is from the temporal pairwise distance
corresponding to 1 chunk (1024 samples, about 23 ms) to the one corresponding
to 200 chunks, that is about 4.6 seconds. The resulting unidimensional vector
of 200 elements stands for the song signature. This approach implies a dimen-
sionality reduction rate of about 93% (from about 2800 samples of the original
MFCCs matrix (with size 215 x 13) to 200 samples of the variogram vector)
in the case of the shortest audio fragment (5 seconds), and about 99.8% (from
about 168000 samples of the original MFCCs matrix (with size 12919 x 13) to
200 samples of the variogram vector) in the case of the largest audio fragment
with a maximum duration of 5 minutes.

In Figure 5, two examples of full variogram calculated on the second MFCC
of two songs from the genre classical and electronic, are shown.

The large discrepancy expected by the comparison of two songs belonging
to two very different genres, is reflected by the variogram analysis. The second
MFCCs of the two songs are rather different: the one of the classical piece shows a
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(a) The second MFCC of a classical piece.
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(b) The standardized variogram of the sec-
ond MFCC of a classical piece.
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(c) The second MFCC of an electronic
piece.
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(d) The standardized variogram of the
second MFCC of a electronic piece.

Fig. 5. Two examples of calculation of the full standardized variogram on the second
MFCC of two songs, respectively from classical and electronic genre. The excerpts
analyzed have a duration of 1 minute.

more structured and smoother variability, with few high frequency components
and a hidden (or missing) periodicity, while the one of the electronic piece is
much more fuzzy, with a large contribution of a high frequency variability and
a marked periodical behaviour.

The corresponding variograms reflects very well the behaviour highlighted.
The variogram of the classical piece reveals a very structured variability, with
a high pairwise continuity at the small scale (the nugget effect is null) and a
smoothly increasing variance with a clear asymptotic trend towards the range.
Conversely, the variogram of the electronic piece is much more unstructured,
with continuous periodic oscillation coupled to a very weak asymptotic trend.
Its nugget effect is rather high.

Reduced variogram The reduced variogram is calculated on 12 MFCCs (from
the second MFCC to the last one), on a reduced bunch of lags. A total amount
of 20 lags are sampled with a logarithmically varying density, from 1 to 200,
with the aim to concentrate the lags at the smallest scale, where most of the
variance is expressed (see Figure 6).
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Fig. 6. The variogram for the classical piece of Figure 5(b), reduced by the lag sampling
(thick line). Note the logarithmic distribution of the sampled lags.

The signature matrix is of size 12 x 20, resulting in a total amount of 240
elements (if stacked). The dimensionality reduction rate is quite the same of the
full variogram. In Figure 7, the reduced versions of the full variogram of Figure
5 are shown.

The conclusions drawn for the reduced matrix of variograms are the same
as for the full variogram. The classical piece shows smoother variograms, re-
vealing a more structured variability and a high small scale pairwise continuity.
Conversely, the electronic track reveals a more fuzzy variability structure and a
marked periodical behaviour. In both cases, the reduction of the number of the
lags keeps guaranteeing a faithful representation of the original full variogram.

2.4 Distance measurement

In order to estimate the degree of similarity of the songs, the signatures have to
be numerically compared. In this work, a weighted Euclidean distance is used.

In general, the distance is calculated as follows:

Di,j =

√√√√
n∑

k=1

((Vi(k) − Vj(k)) · ω(k))
2

(3)

where Vi(k) and Vj(k) are the values of the k-th lag of the variograms of two
songs i and j, and ω(k) is the weight of the k-th lag, with a maximum number
of lags n equal to 240, for a bi-dimensional reduced variogram and 200, for a full
unidimensional variogram. Note that the bi-dimensional variogram is stacked
into a unidimensional vector to simplify the calculus.

Actually, the variogram shows a maximum of information (in term of quality
and reliableness) at the small scale. The most predominant meaning of the mea-
sure arises from the first lags, up to the achievement of the range, beyond which
the variogram looses significance. For this reason, three different sets of weights
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Fig. 7. Two examples of calculation of the matrix of standardized variograms of the
whole MFCCs matrix of two songs, respectively from classical and electronic genre.
The excerpts analyzed have a duration of 1 minute.

are proposed: a set of exponentially decreasing weights, a set of logarithmically
decreasing weights and, finally, a set of linearly decreasing weights. A fourth
unweighted variant of the distance is included.

In Figure 8, the three sets of weights are compared. Note that the vectors
of weights represented here correspond to one of the stacked vectors of weights
employed for the reduced variogram (20 lags).

Note that in any of the three cases, the weights are normalized such that
their sum is 1.

3 Evaluation of the performance of the algorithms

The evaluation of the performance of the two variants of variogram, each with the
four weighting functions, is implemented on the basis of the genre classification
music database of the ISMIR 2004 Audio Description Contest [2].
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Fig. 8. The three vectors of weights employed for the calculus of the distance. Note
that the shape of the linear weights is deformed by the scaling of the lag axis that is
logarithmic.

The pseudo-objective evaluation [3], currently employed in the MIREX music
similarity tasks, is performed. The matching rates of artist, album and (artist-
filtered) genre, for the first 5, 10, 20 and 50 songs are calculated.

After sorting the list of songs according to the degree of similarity to the
seed item (one of the songs of the collection, selected recursively), the pseudo-
objective statistics are calculated as percentages of the songs of the list sharing
the same artist, album or (artist-filtered) genre. These percentages are calculated
four times, on a reference total of the first 5, 10, 20 and 50 songs of the list.

In order to compensate for the unequal distribution of items per category
(artist, album or genre), the reference total is defined as the maximum between
the defined reference (5, 10, 20 or 50) and the maximum number of available
songs per category. For instance, if only 8 songs are available for a certain artist,
the reference total for the calculus of the artist-based statistic has to be 5, for
the first 5 songs, but it must be reduced to 8 for each of the higher counts (10,
20 or 50). In fact, the statistics would be negatively affected by considering the
reference total as some values higher than the maximum allowed by the database
itself. If the algorithm is able to return all the 8 correct correspondences for the
artist into the first 8 positions, it has to be considered as best performing for
each of the totals: 5/5 (for the first 5 items) and 8/8 (for the first 10, 20 or 50
items).

This procedure is recursively applied to all the songs of the collection, setting
each time one of them as the seed song. Finally, the global score is calculated
as the averaged mean of the scores obtained for each seed song. In Table 1, the
matching scores for the two variants of variogram are shown.

The performance returned by the reduced variogram is globally better than
the one of the full variogram, for any kind of weighting configuration. On the
one hand, it is true that the full variogram returns a more complete information
of the second (and most representative) MFCC, with respect to the reduced
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12 Simone Sammartino, Lorenzo J. Tardón, and Isabel Barbancho

Full variogram Reduced variogram
Exponential weights

Artist 7.24 9.12 13.01 23.63 16.99 18.47 23.11 34.26
Album 5.29 8.52 14.23 26.20 13.25 19.14 26.30 37.69
Genre 43.62 42.46 41.85 40.16 46.43 45.29 44.17 43.23

Logarithmic weights
Artist 5.20 5.94 9.37 18.05 15.81 16.70 21.88 32.86
Album 3.86 5.70 10.43 19.40 12.62 17.83 25.72 37.03
Genre 38.72 38.48 38.41 37.65 48.07 46.66 45.51 42.84

Linear weights
Artist 5.14 5.81 8.90 18.45 16.51 17.70 22.40 33.77
Album 3.79 5.47 9.64 19.44 12.93 19.15 26.74 38.68
Genre 39.25 38.44 38.40 37.79 47.84 46.94 44.81 42.73

No weights
Artist 4.50 5.47 8.40 16.43 15.23 16.32 21.59 32.38
Album 3.42 5.65 9.23 17.97 13.03 17.55 25.23 36.07
Genre 38.19 38.08 37.63 37.25 48.48 47.68 46.18 43.70

First 5 First 10 First 20 First 50 First 5 First 10 First 20 First 50

Table 1. Pseudo-objective statistics for the two variants of variogram calculation. Note
that the genre scores are calculated on the artist-filtered subset. The genre results are
in bold because these results are the ones that can be compared with the MIREX
AMS 2011 results presented in table 2. It can be observed that the proposed methods
perform quite well.

variant, that is calculated on a smaller bunch of lags. On the other hand, the
completeness of the information based on the involvement of the complete set of
MFCCs returns a more accurate description of the song analysed. Apparently,
the loss of information due to the reduction of the lags is compensated by the
gain derived by the employment of the complete MFCCs matrix.

Also, an inverse trend of variation of the scores is observed for the three
different categories: artist, album and genre. In particular, the artist and album-
based scores increase with the number of items considered, while for the genre the
tendency is inverse. It basically depends on the availability of items per category.
In fact, the probability of returning one song of the first 5, 10, 20 or 50 with the
same genre of the seed song, is much higher than the one related to the other two
categories. Actually, the genre-based statistic reflects the higher concentration
power of the genre, that finds similar songs more easily, yet from the very first
few items considered. Conversely, as finding the correct songs with the same
artist or album is much harder, the larger the number of items considered, the
higher the score obtained for these categories.

The best results for the full variogram (e.g.: 43.62%, obtained for the genre
coincidence of the first 5 items of the list) have been obtained with the set
of exponentially decreasing weights, where the first lags contribution is much
higher than the others. Surprisingly, the result shown by the reduced variogram
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Novel use of the variogram for MFCCs modeling 13

is different: the best scores are referred to the null weighting of the distance,
although the trend is not as clear as the case of the full variogram.

Table 2 shows the results of the pseudo-objective evaluation of the algorithms
proposed to the Audio Music Similarity contest of the MIREX 2011 (only the
artist-filtered genre scores) [12]. It can be observed that the scores obtained for
the variogram-based approaches are in line with the reference represented by the
MIREX Audio Music Similarity task. Although a direct quantitative comparison
cannot be provided because of the differences in the test database used in the
two frameworks, the variogram seems to return a rather reliable accuracy in the
estimation of music similarity.

Method First 5 First 10 First 20 First 50

STBD1 24.19 23.34 22.14 20.57
STBD2 23.55 22.56 21.61 19.98
STBD3 23.07 22.55 21.78 20.47
DM2 46.02 44.14 42.22 39.28
DM3 46.08 44.20 42.33 39.37
GKC1 23.45 22.55 21.57 20.01
HKHLL1 34.91 33.81 32.72 31.39
ML1 41.77 39.86 38.09 35.53
ML2 40.19 38.45 36.28 33.62
ML3 41.06 38.99 36.80 33.85
PS1 54.11 52.17 50.13 46.74
SSKS3 54.65 53.15 51.52 48.98
SSPK2 54.24 52.75 51.19 48.56
YL1 37.40 35.43 33.01 29.54

Table 2. Average artist-filtered genre scores of the algorithms proposed to the MIREX
2011 contest. The method acronyms correspond to the standard coding employed in
the MIREX contest [12].

4 Conclusions and future works

In this paper, the use of the temporal variogram has been proposed as a tool to
model the temporal variability of the Mel Frequency Cepstral Coefficients and
it has been exploited to estimate music similarity.

After a brief description of the theory of the variogram analysis and its adap-
tation to a temporal framework, two different variants of the calculus of the var-
iogram and four weighting functions for the calculus of the distance between the
song signatures, have been proposed. Both the two variogram-based approaches
have been tested on a reference database of songs, divided into six different
genres. A pseudo-objective analysis has been computed in order to achieve a
quantitative evaluation of the performance of the methods and propose a dis-
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cussion on the results. Also, a comparison with the actual reference in term of
algorithms aimed to perform music similarity, has been provided.

The reduced variogram returns better scores than the full variant, due to the
more complete information given by the whole MFCCs matrix (the first MFCC
excluded). This method seems not be really influenced by the kind of weighting
function used for the calculus of the distance. The results are in line with the
references of the MIREX 2011.

All the variograms analyzed so far are the results of the empirical calculus
of the equation (2). In future development of the variogram-based approach, the
automatic fitting of the theoretical models can be employed to try to resume
the variogram function as a series of parameters. In particular, the nugget effect,
the range and the sill of the theoretical models could be employed as low-level
descriptors for classification purposes.

In order to test this concept, a very simple approximation has been carried
out. A simple least square fit of the exponential model has been implemented
to the variograms of the songs of the collection tested in the article, in order to
achieve a first estimation of the nugget effect. Afterwards, it has been employed
as a low-level descriptor, together with other popular MIR descriptors [16], and
tested in a music genre classifier. The classifier employed was a simply knn-
classifier, with k = 5 neighbors.

The results are rather encouraging. The performance of the nugget effect,
although it has been estimated by a simply automatic fit of the experimental
variograms, are in line with the one of other more popular features. The nugget
effect reflects even a better behavior in some specific cases (as the example of
the genre world).

As known, the automatic fitting of the empirical variograms is an actual mat-
ter of discussion and the issue is far from being resolved [9]. These preliminary
results presented encourage to focus on the automatic fitting of the variogram
models in order to obtain more robust descriptors to be conveniently used for
MIR tasks.
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