
ENP-Regex - a Regular Expression Matcher
Prototype for the Expressive Notation Package

Mika Kuuskankare?

Sibelius Academy, Finland
mkuuskan@siba.fi

Abstract. In this paper we introduce ENP-regex, a prototype of a
regular expression matcher developed for Expressive Notation Package
(ENP). ENP-regex allows us to use the regular expression syntax to
match against several score attributes, such as pitch and rhythm. Instead
of writing the regular expression matcher from scratch we implement a
scheme where a thin conversion layer is inserted between an existing
Lisp-based regular expression library and ENP. The information sent
from ENP to the regex matcher is transformed into a textual format.
Similarly, the matches are converted into corresponding score objects.
The benefit of the present implementation is that potentially the whole
syntax of the regex matcher in question is at our disposal. We have im-
plemented a prototype of the regular expression matcher. In this paper
we present the current state of the system through examples.

Keywords: Regular expressions, music notation, scripting, music anal-
ysis and visualization

1 Introduction

In this paper we present an extension to Expressive Notation Package (ENP,
[8]) called ENP-regex. ENP-regex allows us to use regular expressions to match
against musical data, such as pitch and rhythm. Traditionally, regular expres-
sions are used for matching characters, words, or patterns of characters in strings.
Similarly, with ENP-regex, we are able to match notes, groups of notes and dif-
ferent patterns in an ENP score according to a given property.

Regular expressions and other string search algorithms have been widely
used in the music domain. Dovey [4] reports a regular expression like search
framework that uses piano-roll notations as a starting point. One of the most
notable music analysis applications, Humdrum [6], uses the regular expressions
extensively. The problems with representing musical attributes with text are
widely discussed in [3].

Our main motivation is to study the potential of regular expressions in the
context of ENP. We use symbolic music notation, not text, as a starting point

? The work of Mika Kuuskankare has been supported by the Academy of Finland
(SA137619). We would also like to thank CCRMA, Stanford University, for hosting
the research.

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012) 
19-22 June 2012, Queen Mary University of London 
All rights remain with the authors.

128



2 Mika Kuuskankare

and use musical conventions, rather than textual, when describing the regular
expression patterns. This should make the system more approachable for musi-
cians. The mapping between the musical attributes and regular expressions is
done on the fly without any further actions required from the user.

A new scripting language is envisioned where any Lisp function could be
applied to the matching objects. Potentially, we could insert expressions, add or
delete notes, transpose them, etc. For example, an intelligent find (or find and
replace) extension could be implemented with the help of regular expressions.

One of the benefits of using regular expressions is that they are widely known
and used. The plan is to eventually integrate ENP-regex more closely into the
ENP tool-chain.

The rest of the paper is organized as follows. First, we discuss some of the im-
plementation issues. Next, we give some examples of real-world problems where
ENP-regex would prove to be useful. The paper ends with some discussion and
a list of plans for further development.

2 ENP-regex

ENP-regex is based on a library called cl-ppcre [1] which is a regular expression
library for Common Lisp. The ENP-regex matcher can be run in different do-
mains, currently pitch, rhythm, interval, and harmony (pitch-class set), to match
against several score properties. The user inputs the regular expression using a
slightly modified syntax (this will be discussed below in more detail). The target
score is encoded so that it can be processed by the cl-ppcre matcher. The results
returned by cl-ppcre (indices) are translated back to score objects, and, finally,
the action indicated by the user is performed. At this stage we mark the matches
in several different ways, such as inserting expressions, or simply by highlighting
the matches.

One of the key concepts behind the ENP-regex implementation is the idea of
a translator. A translator maps the desired score objects into a representation
that, in turn, can be used as an input to a conventional regex parser, which, in
turn, returns indices which are mapped back to score objects. Figure 1 illustrates
this process.

The regular expression syntax used in the case of ENP-regex is compatible
with that of Perl but slightly extended. Although it would be convenient in

our case, normally, we do not write a pattern as [60-66] to match all numbers

between 60 and 66. Therefore, for convenience, a small language extension is
provided which allows us to use a more musically oriented syntax when defining
the regular expression patterns.

For pitch, both absolute pitch and intervals, we use the MIDI note repre-
sentation, i.e., middle-C is represented by the number 60, and for rhythm the

fractional notation, e.g., 1/4 or 1/20 . Note that our MIDI note representation

is extended as it allows us to represent micro-intervals by adding a fractional
part, such as 0.5, for example, to denote a quarter tone. For harmony, we use

129



Title Suppressed Due to Excessive Length 3

C1 C2 C3 C2 C4

“acdcb”

[c-d]+

Fig. 1. The translation of score properties into a representation that can be parsed by
a regular expression engine and back to score objects.

the pitch-class set notation following the conventions introduced by Allen Forte
[2], where the major triad, for example, is notated with the symbol “3-11b” and
the minor one with “3-11a”.

To distinguish the ENP-regex notation from that of regular expressions we
use a hash-mark (#) as a prefix. A pre-processor is implemented which translates
our customized regex syntax into the Perl compatible syntax. Thus, it is possible

to indicate, for example, a pitch range by writing it as [#60-#72] .

3 Examples

In this section we illustrate the potential of ENP-regex through examples.
Figure 2 shows our editor developed for testing the ENP-regex interface.

The first row gives the selectors for the property domains, i.e, pitch, rhythm,
intervals, and harmony. Using the next group of controllers we can select the
desired side-effect. “default” indicates that we want to highlight the matches
and “custom” together with the following text input field allow us to specify the
class name and the attributes of an ENP-expression [7], which will be applied to
the matches found in the score. The third row allows us to choose the matching
direction (this will be discussed in Section ??). Finally, in the bottom row the
ENP-regex pattern is given.

3.1 Phrases

We begin with a simple example that aims to illustrate the relationship between
regular expressions and ENP. The internal encoding of pitch (and other informa-
tion) is arranged so that the alphanumeric characters are reserved for attributes

130



4 Mika Kuuskankare

that are related to events, and the ’non-word characters’ are reserved for rests.
Currently, we do not distinguish between rests of different lengths, but treat
them as non-sounding events. Therefore, the ’alphanumeric characters’ symbol,

\w , in ENP-regex is used to indicate a note, and the \W , in turn, indicates

a rest. We provide this translation for convenience only and it does not attempt
to draw any further conclusions about the relationship of music and text.

In our first example (see Figure 2) we use ENP-regex to insert phrasing slurs

in the score, using the following regular expression: \w+ . This is a straight-

forward way of segmenting music according to the rests. We also use a custom
phrasing slur with some additional attributes (see, “SLUR :KIND :DASHED” in
Figure 2) instead of simply revealing the matches. The phrasing slur is displayed
in the score as a curve using a stippled pattern.

Fig. 2. The ENP-regex tool with the regex expression at the bottom.

Fig. 3. Inserting phrase marking (the two dashed slurs above the score) with the help
of ENP-regex using the pattern \w+. (Yesterday by The Beatles)

3.2 Pitch

In Figure 4, we give an example of ENP-regex in the pitch domain, where we
aim to reveal the extreme pitches in a passage written for the flute. The flute
spans form B3 to C7 and above. Here, the range considered as extreme is chosen
somewhat arbitrarily. The ENP-regex pattern to find and mark the ranges is as
follows: [#59-#60#90-#96].

131



Title Suppressed Due to Excessive Length 5

Fig. 4. Indicating extremely low and high pitches (the encircled notes) in the piece of
music for the flute using a pattern with low and high ranges: [#59-#60#90-#96].

Fig. 5. Articulation slurs inserted according to the interval between two consecutive
notes. (J.S.Bach)

3.3 Intervals

As an example of ENP-regex in the interval domain we attempt to add appropri-
ate articulation slurs to a small excerpt of music by J.S. Bach (see Figure 5). We
note that in the original there is a slur between two notes forming a descending

minor second interval. We define the interval pattern as #-1 and define the

slur expression as in Figure 3 but without the extra attributes (:kind :dashed).
Figure 5 shows the slurs inserted with the help of ENP-regex.

3.4 Harmony

The example shown in Figure 7 is a small excerpt, prepared by the Finnish
composer Kimmo Kuitunen, called “6-Z47B”-blues. Here, we use ENP-regex
in the harmony domain to locate certain sonorities, namely the “mother” set-
class 6-Z47B and the set-class named 5-35 (a chord consisting of only perfect
fifth intervals is possible to construct using the set-class 5-35). The ENP-regex
is given in Figure 6. This example demonstrates the ENP-regex can also be
executed in non-metrical context.

3.5 Repetitions Using Back-references

Our final example in this section deals with repetitions. Here, we use a regular ex-

pression construct, called a back-reference, which is defined as follows: (.+)\1+ .

The matching is done in the harmony domain. In Figure 8 the matching har-
monies are indicated by enclosing them inside boxes. Note, that harmony here
is a harmony class, thus it does not have anything to do with a particular set-
ting or voicing. This simple pattern finds repeating series harmonies. The first
of the matches is an alternating pattern between two different harmonies, and
the latter two matches represent static repeating harmonies.

132



6 Mika Kuuskankare

Fig. 6. ENP-regex in the harmony domain aimed at finding and marking specific har-
monies in the target score.

Fig. 7. The harmonies 6-Z47B and 5-35 marked in the score by Kuitunen.

Fig. 8. Harmonic repetitions revealed with the help of ENP-regex using back-
references. (Prokofiev: Peter and the Wolf)

133



Title Suppressed Due to Excessive Length 7

4 Future Development

There are several improvements in the planning. First, we should develop a user
API for creating custom mappings to any score property, e.g., ENP-expressions.

Second, we should support iterating over higher-level objects than notes.
The user could be presented with a choice between notes, chords, and measures,
for example. This way we would be free of adding any complexity in the regex
pattern, in terms of dealing with the beat boundaries, for example.

Third, we should augment the regular expression specification of ENP-regex.
Several additions are planned, such as specifying the matching direction, e.g.,
right-to-left or bi-directional matching, and incorporating loop-like constructs,
such as the beginning index of the matching, step, etc. The latter would allow
us to use regex matching to insert, for example, interval n-grams into the target
score. n-grams have been have been widely used in text retrieval and are also
proposed for MIR applications, for example, in [5].

Finally, the regex matchers could potentially also be combined. It should be
investigated if there is a feasible way to logically combine the results. A simple

intersection might not be enough, as, for example, a regex [60-67]{4} would

not necessarily be true, when an intersection is taken with the results returned

by the regex 1/4+ executed in the rhythm domain, etc. However, it would

be interesting to provide users with the choice as it would allow us to make
multi-parameter regular expression matching.

Finally, our regex implementation could also potentially be coupled with the
existing pattern matching language of PWGLConstraints[9], thus allowing us
to use both syntaxes interchangeably. Some patterns would be more easily ex-
pressed using the regex syntax, rather than that of our backtracking constraints
system.

5 Conclusions

This paper presents ENP-regex, the prototype implementation of a regular ex-
pressions matcher for the Expressive Notation Package. Currently, ENP-regex is
able to use most of the regular expression syntax and can match against different
types of score information, such as pitch, rhythm, intervals, and harmony.

The most interesting applications of the present work can be found in the
domains of music information retrieval, scripting, and computer assisted com-
position and analysis.

References

1. ppcre. http://weitz.de/cl-ppcre/
2. Allen Forte: The Structure of Atonal Music. Journal of Music Theory (1973)
3. Cambouropoulos, E., Crawford, T., Iliopoulos, C.S.: Pattern processing in melodic

sequences: Challenges, caveats and prospects. In: In Proceedings of the AISB’99
Convention (Arti Intelligence and Simulation of Behaviour. pp. 42–47 (1999)

134



8 Mika Kuuskankare

4. Dovey, M.J.: A technique for regular expression style searching in polyphonic music.
In: International Symposium on Music Information Retrieval (2001)

5. Downie, J.S.: Evaluating a Simple Approach to Music Information Retrieval: Con-
ceiving Melodic N-grams as Text. Ph.D. thesis, University of Western Ontario (1999)

6. Huron, D.: Music information processing using the humdrum toolkit: Concepts,
examples, and lessons. Computer Music Journal 26(2), 15–30 (2002)

7. Kuuskankare, M., Laurson, M.: ENP-Expressions, Score-BPF as a Case Study. In:
Proceedings of International Computer Music Conference. pp. 103–106. Singapore
(2003)

8. Kuuskankare, M., Laurson, M.: Expressive Notation Package. Computer Music Jour-
nal 30(4), 67–79 (2006)

9. Laurson, M.: PATCHWORK: A Visual Programming Language and some Musical
Applications. Studia musica no.6, doctoral dissertation, Sibelius Academy, Helsinki
(1996)

135




