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Abstract. In recent years, spectral clustering methods are getting more
and more attention in many fields of investigation for analysis and classi-
fication tasks. Nevertheless, no applications to symbolic music have been
provided yet.
Here we present a method for motif classification based on spectral clus-
tering of music scores that can be exploited, for instance, in automatic
or computer-assisted music analysis. Scores are represented through a
network-graph of segments and then ranked depending on their cen-
trality within the network itself, which can be measured through the
components of the leading eigenvector associated to the Laplacian of the
graph. Moreover, segments with higher centrality are more likely to be
relevant for music summarization.
An experimental musicological analysis has been performed on J.S.Bach’s
2-part Inventions to prove the effectiveness of the method.

Keywords: spectral clustering, graph, centrality

1 Introduction

The problem of automatically identifying relevant characteristic motifs and ef-
ficiently store and retrieve the digital content has become an important issue
as digital collections are increasing in number and size more or less everywhere.
Music segmentation is usually realized through musicological analysis by human
experts and, at the moment, automatic segmentation is a difficult task without
human intervention. The supposed music themes have often to undergo a hand-
made musicological evaluation, aimed at recognizing their expected relevance
and completeness of results. As a matter of fact, an automatic process could
extract a musical theme which is too long, or too short, or simply irrelevant.
That is why a human feedback is still required in order to obtain high-quality
results.

Some proposed automatic methods are more focused on tonal music as they
exploit the harmonic structures of a piece and voice leading. On the other hand,
other methods are more general and do not take into account neither harmony
nor rhythm.
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2 Alberto Pinto

Notwithstanding the conspicuousness of the literature, current approaches
seem to rely just on repetitions [1] [2] [3], assigning higher scores to recurring
equivalent melodic and harmonic patterns [4]. Recently reported approaches to
melodic clustering based on motivic topologies [5], graph distance [6] [7] and
paradigmatic analysis [8] have been used to select relevant subsequences among
highly repeated ones by heuristic criteria [9] [10].

Moreover, the “paradigm of repetition”, in order to be applied, needs by no
means a precise definition of “varied repetition”, a concept not easy to define. Of
course, it has to include standard music transformation, but it is very difficult
to adopt a simple two-valued logic (this is a repetition and this is not) in this
context, where a more fuzzy approach seems to better address such a problem.

Here we present a ranking method based on relations instead of repetitions.
We show that a distance distribution on a graph of note subsequences induced by
music similarity measures generates a ranking real eigenvector whose components
reflect the actual relevance of motives. Spectral ranking on this eigenvector allows
to better identify different sections within a piece through the partitioning of the
score into clusters of similar melodies.

2 Related approaches

Lartillot [11] [12] defined a musical pattern discovery system motivated by hu-
man listening strategies. Pitch intervals are used together with duration ratios
to recognize identical or similar note pairs, which in turn are combined to con-
struct similar patterns. Pattern selection is guided by paradigmatic aspects and
overlaps of segments are allowed.

Cambouropoulos [13], on the other hand, proposed methods to divide given
musical pieces into mostly non-overlapping segments. A prominence value is
calculated for each melody based on the number of exact occurrences of non-
overlapping melodies. Prominence values of melodies are used to determine the
boundaries of the segments [14]. He also developed methods to recognize varia-
tions of filling and thinning (through note insertion and deletion) into the orig-
inal melody. Cambouropoulos and Widmer [15] proposed methods to construct
melodic clusters depending on the melodic and rhythmic features of the given
segments. Basically, similarities of these features up to a particular threshold are
used to determine the clusters. High computational costs of this method make
applications to long pieces difficult.

2.1 Tonal harmony-based approaches

Tonal harmony based approaches exploit particular harmonic patterns (such
as tonic-subdominant-dominant-tonic), melodic movements (e.g. sensible-tonic),
and some rhythmical punctuation features (pauses, long-duration notes, ...) for
a definition of a commonly accepted semantic in many ages and cultures.

These approaches typically lead towards score reductions (see Figure 1), made
possible by taking advantage of additional musicological information related to
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the piece and assigning different level of relevance to the notes of a melody.
For example one may choose to assign higher importance to the stressed notes
inside a bar [16]. In other words, the goal of comparing two melodic sequences
is achieved by reducing musical information into some “primitive types” and
comparing the reduced fragments by means of suitable metrics.
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Fig. 1. J.S. Bach, BWV 1080: Score reductions.

A very interesting reductionistic approach to music analysis has been at-
tempted by Fred Lerdahl and Ray Jackendoff. Lerdahl and Jakendoff [17] re-
search was oriented towards a formal description of the musical intuitions of a
listener who is experienced in a musical idiom. Their purpose was the develop-
ment of a formal grammar which could be used to analyze any tonal composition.

The study of these mechanisms allows the construction of a grammar able
to describe the fundamental rules followed by human mind in the recognition of
the underlying structures of a musical piece.

2.2 Topological approaches

Mazzola and Buteau [18] proposed a general theoretical framework for the paradig-
matic analysis of the melodic structures. The main idea is that a paradigmatic
approach can be turned into a topological approach. They consider not only con-
secutive tone sequences, but allow any subset of the ambient melody to carry a
melodic shape (such as rigid shape, diastematic shape, etc.). The mathematical
construction is very complex and, as for the motif selection process, it relies on
the repetition paradigm.

The method proposed by Adiloglu, Noll and Obermayer in [10] does not take
into account the harmonic structure of a piece and is based just on similarities of
melodies and on the concept of similarity neighborhood. Melodies are considered
as pure pitch sequences, excluding rests and rhythmical information.

A monophonic piece is considered to be a single melody M , i.e. they reduce
the piece to its melodic surface. Similarly, a polyphonic piece is considered to
be the list M = (Mi)i=1,...,N of its voices Mi. The next step is to model a
number of different melodic transformations, such as transpositions, inversions
and retrogradations and to provide an effective similarity measure based on
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cross-correlation between melodic fragments that takes into account these trans-
formations. They utilize a mathematical distance measure to recognize melodic
similarity and the equivalence classes that makes use of the concept of neigh-
bourhood to define a set of similar melodies.

Following the repetition paradigm stated by Cambouropoulos in [14] they
define a prominence value to each melody based on the number of occurrences,
and on the length of the melody. The only difference is that they allow also
melody overlapping. In the end, the significance of a melody m of length n within
a given piece M is the normalized cardinality of the similarity neighbourhood set
of the given melody. If two melodies appear equal number of times, the longer
melody is more significant than the shorter one.

In [10] the complete collection of the Two-part Inventions by J. S. Bach is
used to evaluate the method, and this will be also our choice in section 4.

3 The model

Our point of view can be synthesized in the following points:

1. consider a music piece as a network graph of segments,
2. take into account both melodic and rhythmical structures of segments
3. do not consider harmony, as it is too much related to tonality.

A single frame may represent, for instance, a bar or a specific voice within
a bar like in Fig. 2, but also more general segments of the piece. Thus, a music
piece can be looked at like a complete graph Kn. In graph theory, a complete
graph is a simple graph where an edge connects every pair of distinct vertices.
The complete graph on n vertices has n(n−1)/2 edges and is a regular graph of
degree n − 1. In this representation, score segments correspond to graph nodes
and the similarity between couples of segments correspond to edge weights.

3.1 Metric weights

In this Section we are going to introduce the metric concepts we adopted to cal-
culate similarities between different score windows. The variety of segmentations
reflects to a large extent the variety of musical similarity concepts, nevertheless,
as stated in Section 4, the model is rather robust respect to metric changes.

In general, we can just require that the set of segments can be endowed with
a notion of distance

d : S × S → R

between pairs of segments and turns this set into a (possibly metric) space (S, d).
A natural choice for point sets of a metric space is the Hausdorff metric [19] but
any other distance discovered to be useful in music perception, like EMD/PTD
[20], can be assumed as well.

Here we assume d to be:
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Fig. 2. A representation of the (first-order) network of frames.

1. real,

2. non-negative,

3. symmetric and

4. such that d(s, s) = 0, ∀s ∈ S

As a matter of fact, most musically relevant perceptual distances do not
satisfy all metric axioms [20]. Therefore no further property, like the identity of
indiscernibles or the triangle inequality, is assumed.

Given two segments s1 and s2, the metrics we adopted in the experiments
are the following:

d1(s1, s2) =

√∑

|s|
|[s1]12 − [s2]12|2 (1)

d2(s1, s2) =

√∑

|s|
(s

′
1(t)− s′2(t))2 (2)
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where s′ is the derivative operator on the sequence s, |s| is the length of s and
[s]12 is the sequence s where each entry has been chosen in the interval [0, 11].

d1 is a first-order metric that takes into account just octave transpositions
of melodies. In fact, pitch classes out of the range [0, 11] are folded back into
the same interval, so melodies which differ for one or more octaves belong to the
same congruence class modulo 12 semitones. d2 is a second-order metric that
takes into account arbitrary transpositions of a melody. No other assumptions
on possible variations have been made, so that an equivalence class of melodies
is composed just of transpositions and inversions of the same melody like in
Adiloglu (2006).

Both distances can be applied to single voice sequences but also to multi-
ple voice sequences, given that a suitable representation has been provided. For
instance, in a two voice piece, with voices v1 and v2, one can consider the dif-
ference vector v = v1 − v2 as a good representation of a specific segment, and
then apply d1 or d2 to this new object. The advantage of using this differential
representation is that it is invariant respect to transpositions of the two voices
so that, for instance, it makes also d1 invariant respect to transpositions, and
not just to octave shifts.

By exploiting those distance concepts, it is possible to endow the edges of the
complete graph with metric weights in order to compute the weights of nodes in
terms of the main eigenvector, as we are going to show in the following Sections.

3.2 The algorithm

Let d : S ×S → R denote a distance function on S, like those defined in Section
3.1, which assigns each pair of segments si and sj a distance d(si, sj). We can
describe the algorithm through the following steps:

1. Form the distance matrix A = [ai,j ] such that ai,j = d(si, sj);
2. Form the affinity matrix W = [wi,j ] defined by

wi,j = exp(−−d
2(xi, xj)

2σ2
) (3)

The parameter σ can be chosen experimentally, a possible choice is the stan-
dard deviation of the similarity values within the considered network graph
(this has been our choice in the experimental part);

3. Form the Laplacian matrix L = D−1/2WD−1/2, where D is the diagonal
matrix whose (i, i) element is the sum of W’s i-th row

4. Compute the leading eigenvector x = [xi] of L and rank each segment si
according to the component xi of x.

5. Perform a k-means algorithm on the leading eigenvector to cluster the seg-
ments.

4 Experimental results

In order to evaluate the relevance of the results of the proposed method we need
a suitable data collection together with a commonly acceptable ground truth
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for that collection. Following [10], Johann Sebastian Bach’s Two-part Inventions
has been our choice. For this collection, a complete ground truth is provided by
musicological analysis and it can be found for example in [21] and [22].
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Fig. 3. Clustered bars in BWV 772 according to k-means performed on the leading
eigenvector of the laplacian matrix.

When compared to musicological analysis [10] [21] [22] it is evident that
the centrality-based model outperforms the repetition-based model, providing
also more significative information. Segments with higher rank in the relational
model represent always relevant bars of the score, even if they may be different
by using different metrics. This means that relevant bars contain a main motif or
characterizing sequences. It is not the same for the model based on repetitions:
here the relevancy really depends just on the number of repetitions, so it can
happen that a trill turns to be more relevant than the rest of the piece just
because its repetition rate is higher than that of the other bars.

Model Precision (%)

Repetition 43

d1 77

d2 95
Table 1. Precision results for the three models applied to J. S. Bach’s Inventions.
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Fig. 4. Centrality values plotted against bar numbers for the first 6 J.S.Bach’s Two-
Part Inventions.

Bar ranking is in principle not affected by the repetition rate of patterns
and higher importance is equally given to higher and lower repetition rates. Of
course, superpositions of the two methods may happen too.

On the other hand, cases exist for which no repetition occurs and, conse-
quently, the repetition paradigm is not applicable in principle, unless defining
ad hoc neighborhood concepts for each piece. In these cases, motif centrality can
provide significant results.

In Figures 4 and 5 the components of the main eigenvector for each invention,
representing the degree of centrality of each bar within the network graph, have
been plotted against bar numbers. This provides an immediate representation of
the importance of each bar within the whole piece. Bars with higher values are
more likely to contain a main motif of the piece.

Figure 3 reports the results for bar spectral clustering in the case of BWV
772 according to k-means, with k=5, performed on the leading eigenvector of
the laplacian matrix. It is evident how the main theme which appears in the first
two bars is identified in the first two clusters.

5 Conclusions

We presented an approach for motif discovery in music pieces based on an eigen-
vector method. Scores are segmented into a network of bars and then ranked
depending on their graph centrality. Spectral is performed in order to classify all
the bar segments. Bars with higher centrality grouped into the same cluster can
be exploited for music summarization. Experiments performed on the collection
of J.S.Bach’s 2-parts Inventions show the effectiveness of the method.

Further investigations deal, for instance, with the relationships between par-
ticular mathematical entities (e.g. spectra) and particular musical issues (e.g. genre,
authorship).

418



A spectral clustering method for musical motifs classification 9

5 10 15 20
0

0.5

1
Invention N.1

5 10 15 20 25
0

0.5

1
Invention N.2

10 20 30 40 50
0

0.5

1
Invention N.3

10 20 30 40 50
0

0.5

1
Invention N.4

10 20 30
0

0.5

1
Invention N.5

20 40 60 80 100 120
0

0.5

1
Invention N.6

5 10 15 20
0

0.5

1
Invention N.7

10 20 30
0

0.5

1
Invention N.8

10 20 30
0

0.5

1
Invention N.9

10 20 30
0

0.5

1
Invention N.10

5 10 15 20
0

0.5

1
Invention N.11

5 10 15 20
0

0.5

1
Invention N.12

5 10 15 20 25
0

0.5

1
Invention N.13

5 10 15 20
0

0.5

1
Invention N.14

5 10 15 20
0

0.5

1
Invention N.15

Fig. 5. Centrality values plotted against bar numbers for the last 9 J.S.Bach’s Two-
Part Inventions.

Second, one could investigate how different metrics d relate to different con-
cepts of melodic and harmonic similarity and how this is related to cluster stabil-
ity. In this context, the inverse problem of finding metrics d induced by a priori
eigenvectors (coming from a hand-made musicological analysis) could provide
interesting insights into music similarity perception.

Finally, it is also possible to compare different music pieces from a structural
point of view by comparing their segmentation derived from spectral clustering.
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