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Abstract. Active learning is a subfield of machine learning based on the
idea that the accuracy of an algorithm can be improved with fewer train-
ing samples if it is allowed to choose the data from which it learns. We
present the results for Support Vector Machine (SVM) active learning
experiments for music mood tagging based on a multi-sample selection
strategy that chooses samples according to their proximity to the bound-
ary, their proximity to points in the training set and the density around
them. The influence of those key active learning parameters is assessed
by means of ANalysis Of Variance (ANOVA). Using these analyses we
demonstrate the efficiency of active learning compared to typical full-
dataset batch learning: our method allows to tag music by mood more
efficiently than a regular approach, requiring fewer instances to obtain
the same performance than using random sample selection methods.

Keywords: active learning, music mood detection, support vector ma-
chines

1 Introduction

Detection of moods and emotions in music is a topic of increasing interest in
which many problems and issues are still to be explored. So far, most works
have dealed with the so-called “basic emotions”such as happiness, sadness, anger,
fear and disgust [1] [2]. This work tries to give one step towards detecting music
emotions that are more specific and hard to articulate. One of the factors that
make non-basic mood detection difficult is that they are usually perceived with
less agreement among listeners than basic ones [1]. In such a context, user-
tailored systems that learn from user perception become a must. Usually, such
systems require getting a big amount of information from the user (e.g. using
relevance feedback or other techniques) and his/her tastes in a process that can
take too long.

In our case, we extend Laurier’s method [3] for music mood classification. In
such system, mood tags are assigned by means of a two-step process of feature
extraction and statistical analysis. Those features are obtained for labeled songs
and then the system is trained to learn which values of the extracted features
define every group. A careful selection of the training examples is always required
in order to maximize the generalization power of the final system.
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Our work deals with the task of optimizing the training process by trying
to speed user customization up, keeping the system as general as possible to
different music genres for a specific user. We use active learning as it has shown
good performance on many multimedia applications [4] [5] [6] but, surprisingly,
it has been rarely used in Music Information Retrieval (MIR) even though its
promising results [7] [8]. We perform a study on the application of active learning
techniques to music mood classification extending Laurier’s method with a multi-
sample selection strategy based on Wang’s [8]. In addition, we study the influence
that all the parameters of this strategy have on the final results.

During this introduction, we review some concepts about active learning and
its application to MIR. In Section 2 we explain our methodology. Results are
shown and explained in Section 3. Finally, we discuss these results in Section 4.

1.1 Active Learning

Active Learning (AL) is aimed at maximizing the accuracy of a machine learning
algorithm by means of allowing it to choose the data from which it learns (this
usually leading to minimizing the size of the training set). In order to do so, the
system may pose queries (unlabeled data instances) to be labeled by an oracle.
AL is useful for problems where unlabeled data is easy to obtain, while labels
are not [9]. We will deal with uncertainty-based AL, in which the learner
queries instances for which it is least certain about how to label. The basic idea
is that if, for example, the classification is binary, the instance that would be
queried would be the one which probability of being positive is closest to 0.5
(total uncertainty). For more information about refinements of this technique
we refer to [9].

Active Learning in MIR

Mandel et al. [7] demonstrated that AL techniques can be used for music retrieval
with quite good results. Specifically, they classified songs according to their style
and mood, being able to perform the same accuracy with half as many samples
as without using AL to intelligently choose the training examples.

Wang et al. [8] propose a strategy for multi-samples selection for Support
Vector Machine (SVM) AL. Their assumption is that, in music retrieval systems,
it is necessary to present multiple samples (i.e. to make multiple queries) at each
iteration. This is because the user could very likely lose patience after some time
if just one sample is presented to him to label at each iteration. As we use the
method they propose, we explain it in depth in Section 2.4.

2 Methodology

2.1 Mood tags and songs datasets

We used datasets from previous research ([3]) for happy, sad, aggressive and
relaxed categories and we also created new datasets for humorous, triumphant,
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mysterious and sentimental mood tags. These tags were chosen according to
two main criteria: first, they improve the emotional representation given by the
already existing ones (i.e. they do not have a close semantic relationship in the
sense that they cover a broad and non-overlapping emotional landscape); second,
they have a certain social relevance (judged by their presence as tags in lastfm1)
that makes them interesting to study.

As we deal with binary classification, for each mood tag we actually need
two collections of songs: one containing songs that belong to that category and
another one with songs that do not belong to it. They contain 150 to 200 30-
seconds MP3 files and we have tried to get a high coverage of genres and artists.
They were created by collecting a high number of songs according to their mood
annotation at lastfm and then validating them by 6 listeners, keeping just those
songs which tag was agreed by at least 4 of them. For further details on this part
of the work, please refer to [10].

2.2 Feature Extraction and Dataset Management

Descriptors of timbre [11], loudness, rhythm [12] and tonal characteristics [13]
were computed and processed using MTG-internal libraries [14]. We compute
statistics of these values (min, max, mean, variance). Then, we normalize de-
scriptors and reduce dimensionality using Principal Component Analysis (PCA).
The number of components that is kept is different depending on the size of the
dataset (≈ datasetsize/20). Finally, we compute the density around each point.
This is one of the parameters that the AL strategy uses to measure the informa-
tiveness of each point [8]. This strategy is explained with more detail in Section
2.4.

2.3 Active Learning Experiments

For our experiments, we set a scenario in which we simulate the interaction with
a user. We do so because our work tries to study a large set of combinations
of parameters. Performing experiments with users would be time-intensive and
attention-demanding, thus increasing the risk of getting wrong input. We follow
(as [7]) these steps:

1. Randomly split the database into equal-sized training and test sets.
2. Select a random sample from the training set as the seed (the song for which

the user is looking for songs with the same mood).
3. If we are in the first round, select ITS − 1 (Initial Train Size) samples plus

the seed as the initial set for feedback. We choose them randomly. Otherwise,
select EPI (Elements to add Per Iteration) samples according to the sample
selection strategy (see details in 2.4).

4. According to the ground truth, automatically label the selected samples
(simulating user relevance feedback). Add the labels to the labeled dataset
and remove them from the training set.

1 http://www.last.fm
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5. Retrain the SVM model with the available dataset. Get precision and recall
over the test dataset.

6. Repeat 1-6 100 times to avoid being biased by the selected seed and initial
random-selected training set.

2.4 Active Learning Strategies under Study

Wang’s Multi-Sample Selection Strategy

In this approach, introduced in [8], multiple samples are selected in a way that
they are i) not just close to the boundary (most uncertain/informative samples),
but also ii) representative of the underlying structure and iii) not redundant
among them. To fulfill these three criteria, three values are calculated on every
iteration for each point and different weights can be given to them: the distance
to the decision boundary, the distance diversity and the density around
the sample.

The first one is given by the own SVM classifier, which calculates the decision
boundary ant tells the distance of each point to it. The diversity is calculated
every time a new unlabeled sample x is selected as a candidate to be added to
the current sample set S. It is defined as the minimum distance between samples
in the current selected sample set S (the higher the diversity, the more scattered
the set of samples are in space) and is calculated as

Diver(S + x) = arg min
xi,xj∈{S+x}

D(xi, xj) (1)

Where D(xi, xj) is the distance between points xi and xj and can be cal-
culated using the function Φ(x) that maps points into the transformed SVM
space:

D(xi, xj) =
√

(Φ(xi) − Φ(xj))2 =
√

Φ(xi)2 + Φ(xj)2 − 2 · Φ(xi) ∗ Φ(xj) (2)

Given that the kernel function K(x, y) performs the dot product of two points
in the transformed space, equation (2) can be rewritten as

D(xi, xj) =
√

K(xi, xi) + K(xj , xj) − 2 · K(xi, xj) (3)

The density around the sample, which is included to avoid choosing outliers
as candidates, selects samples from the densest regions. An average distance
T (x) from a particular sample x to its 10 closest neighbors is computed off-line
as

T (x) =
D(xj1, x) + . . . D(xj10, x)

10
, xj1 ̸= . . . xj10 (4)

Once these values are obtained, the selected point is the one that minimizes
(distance to boundary−diversity+density) and the process is repeated as many
times as samples are to be added at the current iteration.

521



Support Vector Machine Active Learning for Music Mood Tagging 5

Modified Wang’s Multi-sample Selection Strategy

This strategy is proposed as an option to solve a drawback of uncertainty-based
AL strategies which is even clearer when small training sets are used: reducing
uncertainty may not always be the best choice. The idea is that the system should
be quite sure about elements that fall far from the boundary, but if actually a
newly retrieved tagged song of this kind is wrongly classified, the information it
will bring to the system will be high as it will imply a big change on the decision
boundary. Therefore, what we do is to perform exactly the same strategy just
explained for half of the samples to be added, while the other half is actually
selected from those furthest from the boundary.

3 Results

The experiment explained in Section 2.3 was performed for different sets of pa-
rameters for all the datasets. Although here we present some of the most relevant
ones, please refer to [10] to find the results with all the possible considered com-
binations of initial training size, elements per iteration, combinations of weights
for distance to boundary, diversity and density values and strategies (AL or
random).

ANalysis Of VAriance (ANOVA) was used in order to test the influence
of each of the parameters on one of the performance measures (F-measure).
ANOVA looks for significant differences (i.e., unlikely to be found by chance)
between means of different experimental conditions by comparing variances. The
null hypothesis in the test is that the means of assumed normally distributed
populations, all having the same standard deviation, are equal. In our specific
case, each distribution corresponds to a certain configuration of values of one
(several) parameter(s). If the null hypothesis is rejected, the value(s) of that
(those) parameter(s) is considered to influence the results of F-measure.

ANOVA test were performed at different moments of the experiments for
all the iterations. These tests showed that none of the parameters except the
Initial Training Size had influence on the results for the first iteration, which is
exactly what we could expect. Also, results show that the interactions between
the method or combination of weights with Initial Training Size and Elements
Per Iteration create significant differences in the F-measure mean. Another in-
teresting observation is that using AL creates significant changes in the mean
F-measure already by the second iteration.

Results in Table 1a confirm that there is an influence of METHOD (a variable
coding random or each of the AL methods) on the results of the F-measure
already in the second iteration, F (2, 115363 = 361.452), p = 000. As shown in
Table 1b, the same applies for WEIGHTS (each value of WEIGHTS corresponds
to a combination of the 3 weight values): it has a significant influence on the
F-measure for the second iteration, F (3, 115354) = 195.085, p = 0.000. These
results tell us that that changing the parameters and their combinations has an
influence on the results that is not by chance.

522
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Table 1a: Results of ANOVA test on the influence and interactions among Initial
Training Size(ITS), Elements Per Iteration (EPI) and METHOD on the F-
measure in the first iteration.

Source Degrees of freedom F p

METHOD 2 361.452 0.000

ITS 2 3959.617 0.000

EPI 2 993.995 0.000

METHOD*ITS 4 172.726 0.000

METHOD*EPI 4 60.673 0.000

ITS*EPI 4 185.998 0.000

METHOD*ITS*EPI 8 84.022 0.000

Error 115363

Total 115390

Table 1b: Results of ANOVA test on the influence and interactions among Initial
Training Size (ITS), Elements Per Iteration (EPI) and WEIGHTS on the F-
measure in the second iteration. This table shows the influence of WEIGHTS on
Wang’s multi-sample selection strategy, therefore METHOD does not appear.

Source Degrees of freedom F p

WEIGHTS 3 195.085 0.000

ITS 2 4498.762 0.000

EPI 2 1312.364 0.000

WEIGHTS*ITS 33.215 172.726 0.000

WEIGHTS*EPI 6 3.087 0.000

ITS*EPI 4 233.452 0.000

WEIGHTS*ITS*EPI 12 3.709 0.000

Error 115354

Total 115390

Figures 1a and 1b show average precision and recall values after 100 runs for
both AL strategies and random sample selection for an initial training size of 5
samples, adding 8 elements per iteration and giving the same weight to the three
parameters for the AL strategies. Precision and recall values are higher using
Wang’s multi-sample selection strategy (up to ≈ 4 percent point units higher
precision than random sample selection at second iteration and ≈ 7 percent point
units at third and fourth).

In Figures 1c and 1d each line corresponds to a different combination of
weights for distance to the boundary, diversity and density using Wang’s multi-
sample selection strategy. The results show that the differences are not big,
though the case in which diversity is given a higher weight is the one with
the best performance (very close to the case in which all elements are given the
same weight). The other two cases (higher weight for distance to the boundary or
density) perform worse ≈ 5 percent point units lower precision in third iteration).

523



Support Vector Machine Active Learning for Music Mood Tagging 7

0 10 20 30 40 50 60
Training set size

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

o
n
 o

v
e
r 

te
st

 s
e
t

(a)

0 10 20 30 40 50 60
Training set size

0.4

0.5

0.6

0.7

0.8

0.9

R
e
ca

ll 
o
v
e
r 

te
st

 s
e
t

(b)

0 10 20 30 40 50 60
Training set size

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

o
n
 o

v
e
r 

te
st

 s
e
t

(c)

0 10 20 30 40 50 60
Training set size

0.4

0.5

0.6

0.7

0.8

0.9

R
e
ca

ll 
o
v
e
r 

te
st

 s
e
t

(d)

Fig. 1: (a) and (b) show precision and recall values during 7 rounds for different
sample selection strategies.Wang’s multi-sample selection strategy (•) converges
faster faster to best performance than random sample selection (⋄) and modified
Wang’s strategy (▽). (c) and (d) show precision and recall values during 7 rounds
for different weight combinations on Wang’s multi-sample selection strategy. Best
performance is achieved giving the same weight to the three parameters (•) or
giving more weight to diversity (big ⋄). Results are worse for cases in which more
weight is given to distance to the boundary (▽) or density (small ⋄).

4 Discussion and Future Work

Results of our experiments confirm those by Mandel [7] or Wang [8], in the sense
that AL can help achieving a given performance on mood classification using less
training instances than random sample selection. As shown in Fig. 1, the same
precision can be achieved by means of AL with half instances than typical batch
learning experiments. We also explored the influence of different parameters
and determined that distance diversity plays a critical role for achieving good
results. This is the parameter responsible for taking non-redundant samples, so
one of our conclusions is that, in the presented scenario, it is more important to
ensure learning about the whole distribution of points in the space rather than
stressing other aspects. For example, by giving more weight to the distance to
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the boundary, we may be querying for points that are too close to each other in
every iteration, thus not learning about the whole dataset.

It may be interesting to explore different AL techniques. A comprehensive
state-of-the-art review on AL can be found in [9], and we also present a brief
review on these techniques in [10]. For example, Expected Error Reduction or
Expected Variance Reduction AL techniques guarantee an improvement on the
results, although they have a much higher computational cost.
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