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Abstract. This paper focuses on emotion recognition and perception in 
Romantic orchestral music. The study seeks to explore the relationship between 
perceived emotion and acoustic and physiological features. Seventy-five 
musical excerpts are used as stimuli to gather psychophysiological and 
behavioral responses of excitement and pleasantness from participants. A set of 
acoustic features ranging from low-level to high-level information was derived 
related to dynamics, harmony, timbre and rhythmic properties of the music. A 
set of physiological features based on blood volume pulse, skin conductance, 
facial EMGs and respiration rate measurements were also extracted. The feature 
extraction process is discussed with particular emphasis on the interaction 
between acoustical and physiological parameters. Statistical relations between 
audio, physiological features and emotional ratings from psychological 
experiments were systematically investigated. Finally, a step-wise multiple 
linear regression model is employed using the best features, and its prediction 
efficiency is evaluated and discussed. The results indicate that merging the 
acoustic and psychophysiological modalities substantially improves the 
emotion recognition accuracy. 
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1   Introduction 

The nature of emotions induced by music has been a matter of much debate. 
Preliminary empirical investigations have demonstrated that basic emotions, such as 
happiness, anger, fear, and sadness, can be recognized in and induced by musical 
stimuli in adults and in young children [1]. The basic emotion model, which claims 
that music induces four or more basic emotions, is appealing to scientists for its 
empirical efficiency. However, it remains far from compelling for music theorists, 
composers, and music lovers because it is likely to underestimate the richness of 
emotional reactions to music that may be experienced in real life [2]. The question of 
whether emotional responses go beyond four main categories is a central issue for 
theories of human emotion [3]. An alternative approach to discrete emotions is to 
stipulate that musical emotions evolve continuously along two or three major 
psychological dimensions [4]. There are an increasing number of studies investigating 
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theoretical models in relation to music, the underlying factors and the mechanisms of 
emotional responses to music at behavioral [5, 6] and neurophysiological levels [7]. 
Many studies try to investigate the relationships between physiological features, such 
as electrocardiogram (ECG), electromyogram (EMG), skin conductance response 
(SCR) and respiration rate (RR), and emotional responses to music [9, 10, 11]. On the 
other hand, numerous studies explore the relationships between acoustic features and 
musical emotion [12, 13, 14]. Most of them try to extract a set of low- and high-level 
acoustical features representing various music descriptors (rhythm, harmony, tonality, 
timbre, dynamics) and correlate them with emotional ratings from participants. 

The main aim of this paper is to implement an approach for music emotion 
recognition and retrieval based on both acoustic and physiological features. Our 
model is based on a previous study [15], which investigated the role of physiological 
response and peripheral feedback in determining the intensity and hedonic value of 
the emotion experienced while listening to music. Results from this study provide 
strong evidence that physiological arousal influences the intensity of emotion 
experienced with music and affects subjective feelings. Using this fusion model, we 
systematically combine structural features from the acoustic domain with 
psychophysiological features in order to further understand their relationship and the 
degree to which they affect subjective emotional qualities and feelings in humans. 

2   Methods 

2.1 Participants 
 
Twenty non-musicians (M = 26 years of age) were recruited as participants (10 
females). They reported less than 1 year of training on an instrument over the past 
five years, and less than two years of training in early childhood. In addition, all 
participants reported no hearing problems and that they liked listening to Classical 
and Romantic music. 
 
2.2 Stimuli 
 
    Seventy-five musical excerpts from the late Romantic period were selected for the 
stimulus set. The selection criteria were as follows. The excerpts had to be anywhere 
from 35 to 45 seconds in duration, because we wanted 30 seconds of complete music 
after the fade-ins and fade-outs. The music was selected by the authors from the 
Romantic, late Romantic, or Neo-classical period (from 1815 to 1900). However, 
most excerpts were selected from the Romantic and late Romantic period. These 
genres were selected under the assumption that music from this period would elicit a 
variety of emotional reactions along both dimensions of the emotion model. Each 
excerpt had to clearly represent one of the four quadrants of the two-dimensional 
emotion space formed by the dimensions of arousal and valence. Ten excerpts were 
chosen from a previous study [16], 21 Romantic piano excerpts from [17] and 44 
from our own personal selection. Aside from the high-arousal/negative-valence 
quadrant, which had 18 excerpts, the other three quadrants contained 19 excerpts. 
Moreover, the excerpts varied in orchestration, in order to explore the effect of timbre 
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variation on emotion judgments. Accordingly, there were 3 conditions: orchestral 
(24), chamber (26), and solo piano (25). 

 
2.3 Procedure 

 
    We measured five different physiological signals for each of the participants: facial 
EMGs, skin conductance, respiration rate and blood volume pulse. The electrodes 
were placed on the following locations: the middle finger (BVP), the index and ring 
fingers (SC), above the zygomaticus muscle, located roughly in the center of the 
cheek (EMG), and above the corrugator super cilii muscle, located above the eyebrow 
(EMG). The respiration belt was placed around the torso in the middle of the rib cage 
just below the pectoral muscles.   

Before beginning the experiment, a practice trial was presented to familiarize the 
participants with the experimental task. After listening to each musical excerpt, 
participants were asked to rate their level of experienced excitement and pleasantness 
on Likert scales. 

3   Audio Feature Extraction 

3.1 Low-Level acoustical features 
 

A theoretical selection of musical features was made based on musical 
characteristics such as dynamics, timbre, harmony, register, and rhythm. A total of 
100 features related to these characteristics were extracted from the musical excerpts. 
For all features, a series of statistical descriptors was computed such as the mean, the 
standard deviation and the linear slope of the trend across frames, i.e., the derivative. 
The MIR 1.3.4 Toolbox was used to compute the various low- and high-level 
descriptors [18]. 

 
3.1.1 Loudness features 

 
We computed information related to the dynamics of the musical signals such as 

the RMS amplitude and the percentage of low-energy frames to see if the energy is 
evenly distributed throughout the signals or certain frames are more contrasted than 
others.  

 
3.1.2 Timbre features 

 
Mel Frequency Cepstral Coefficients (MFCCs) used for speech recognition and 

music modeling were employed. We derived the first 13 MFCCs. Another set of 4 
features related to timbre were extracted from the Short-term Fourier Transform: 
spectral centroid, rolloff, flux, flatness entropy and spectral novelty which indicate 
whether the spectrum distribution is smooth or spiky. The size of the frames used to 
compute the timbre descriptors was 0.5 sec with an overlap of 50% between 
successive windows. 
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3.1.3 Tonality features 
 

The signals were also analyzed according to their harmonic context. Descriptors 
such as the Chromagram (energy distribution of the signals wrapped in the 12 
pitches), the key strength (i.e., the probability associated with each possible key 
candidate, through a cross-correlation with the Chromagram and all possible key 
candidates), the tonal Centroid (a vector derived from the Chromagram corresponding 
to the projection of the chords along circles of fifths or minor thirds) and the harmonic 
change detection function (flux of the tonal Centroid) were extracted. 

 
3.1.4 Rhythmic features 

 
A rhythmic analysis of the musical signals was performed. Descriptors such as the 

fluctuation (the rhythmic periodicity along auditory frequency channels) and the 
estimation of notes and number of onset and attack times per second were computed. 
Finally, the tempo of each excerpt in beats per minute (bpm) was estimated. 

 
3.2 High-level acoustical features 

 
In conjunction with the low-level acoustic descriptors, we used a set of high-level 

features computed with a slightly longer analysis window (3s). The high-level 
features are characteristics of music found frequently in music theory and music 
perception research. 
 
3.2.1 Pulse Clarity 

 
This descriptor measures the sensation of pulse in music. Pulse can be described as 

a fluctuation of musical periodicity that is perceptible as “beatings” in a sub-tonal 
frequency band below 20 Hz. The musical periodicity can be melodic, harmonic or 
rhythmic as long as it is perceived by the listener as a fluctuation in time [19]. 
 
3.2.2 Articulation 

 
This feature attempts to estimate the articulation from musical audio signals by 

attributing to it an overall grade that ranges continuously from zero (staccato) to one 
(legato) by analyzing a set of attack times. 
 
3.2.3 Mode 

 
This feature refers to a computational model that rates excerpts on a bimodal 

major-minor scale. It calculates an overall output that varies along a continuum from 
zero (minor mode) to one (major mode) [14]. 
 
3.2.4 Event density 

 
This descriptor measures the overall amount of simultaneous events in a musical 

excerpt. These events can be melodic, harmonic and rhythmic, as long as they can be 
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perceived as independent entities by listeners. 

  
3.2.5 Brightness 

 
This descriptor measures the sensation of how bright a musical excerpt is felt to be. 

Attack, articulation, or the unbalance or lacking of partials in other regions of the 
frequency spectrum can influence its perception.  
 
3.2.6 Key Clarity 

 
This descriptor measures the sensation of tonality, or tonal center in music. This is 

related to the sensation of how tonal an excerpt of music is perceived to be by 
listeners, disregarding its specific tonality, but focusing on how clear its perception is. 
This scale is also continuous, ranging from zero (atonal) to one (tonal).  

4   Feature extraction of physiological signals 

From the five psychophysiological signals we calculated a total of 60 features 
including conventional statistics in time series, frequency domain and sub-band 
spectra as suggested in [20].  

 
4.1 Blood volume pulse 
 

To obtain the HRV (heart rate variability) from the continuous BVP signal, each 
QRS complex was detected and the RR intervals (all intervals between adjacent R 
waves) or the normal-to-normal (NN) intervals (all intervals between adjacent QRS 
complexes resulting from sinus node depolarization) were determined. We used the 
QRS detection algorithm in [21] in order to obtain the HRV time series. In the time-
domain of the HRV, we calculated statistical features including mean value, standard 
deviation of all NN intervals (SDNN), standard deviation of the first difference of the 
HRV, the number of pairs of successive NN intervals differing by greater than 50 ms 
(NN50), and the proportion derived by dividing NN50 by the total number of NN 
intervals. In the frequency-domain of the HRV time series, three frequency bands are 
of interest in general; very-low frequency (VLF) band (0.003-0.04 Hz), low frequency 
(LF) band (0.04-0.15 Hz), and high frequency (HF) band (0.15-0.4 Hz). From these 
sub-band spectra, we computed the dominant frequency and power of each band by 
integrating the power spectral densities (PSD) obtained by using Welch’s algorithm, 
and the ratio of powers between the low-frequency and high-frequency bands 
(LF/HF). 

 
4.2 Respiration 
 

After detrending and low-pass filtering, we calculated the Breath Rate Variability 
(BRV) by detecting the peaks in the signal within each zero-crossing. From the BRV 
time series, we computed the mean value, SD, and SD of the first difference. In the 
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spectrum of the BRV, peak frequency, power of two sub-bands, low-frequency band 
(0-0.03Hz) and high-frequency band (0.03-0.15 Hz), and the ratio of power between 
the two bands (LF/HF) were calculated. 

 
4.3 Skin conductance 
 

The mean value, standard deviation, and mean of the first and second derivatives 
were extracted as features from the normalized SC signal and the low-passed SC 
signal using a 0.2 Hz cutoff frequency. To obtain a detrended SCR (skin conductance 
response) waveform without DC-level components, we removed continuous, 
piecewise linear trends in the two low-passed signals, i.e., very low-passed (VLP) 
with 0.08 Hz and low-passed (LP) signal with 0.2 Hz cutoff frequency. 

 
4.4 Electromyography (EMGs) 

 
For the EMG signals, we calculated similar types of features as in the case of the 

SC signal. From normalized and low-passed signals, the mean value of the entire 
signal, the mean of first and second derivatives, and the standard deviation were 
extracted as features. The number of occurrences of myo-responses and the ratio of 
these responses within VLP and LP signals were also added to the feature set in a 
similar manner used for detecting the SCR occurrence, but with 0.08 Hz (VLP) and 
0.3 Hz (LP) cutoff frequencies. 

5   Results 

    For the 75 excerpts a step-wise multiple linear regression to predict the participant 
ratings based on the acoustical and physiological descriptors between the acoustical 
and physiological descriptors and participant ratings were computed to gain insight 
into the importance of features for the arousal and valence dimensions of the emotion 
space. Table 1 provides the outcome of the MLR analysis of the acoustic features onto  
excitement and pleasantness coordinates of the excerpts and Table 2 the outcome of 
the analysis of the acoustic and physiological features onto the same coordinates. The 
resulting model provides a good account of excitement with an R2 = 0.81 (see Table 
1) using only the acoustic features spectral fluctuation (β = 0.551), entropy (β = 
0.302) and spectral novelty (β = –0.245). For pleasantness, the model provides an R2 
= 0.44 using only the acoustic features Mode (β = 0.5), Key Clarity (β = 0.27) and 
entropy of Chroma (β = 0.381). 

The model using both acoustic and physiological features provides an R2 = 0.85 
(see Table 2) with spectral fluctuation (β = 0.483), entropy (β = 0.293), spectral 
novelty (β = –0.239), the std of the first derivative of the zygomaticus EMG (β = –
0.116), skin conductance ratio (β = 0.156), and the maximum value of the amplitude 
in blood volume pulse (β = –0.107). The model provides for pleasantness an R2 = 0.54 
using the acoustic and physiological features Mode (β = 0.551), Key Clarity (β = 
0.211), entropy of Chroma (β = 0.334), the minimum of the std of the first derivative 
of the zygomaticus EMG (β = 0.25), and the minimum of the blood volume pulse (β = 
-0.231). 
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Table 1.  Outcome of the multiple linear regression analysis of the acoustic features onto the 
coordinates of the emotion space.  

Excitement β Pleasantness      β 
Fluctuation 0.551 Mode    0.5 
Enthropy 0.302 Key Clarity    0.27 
Novelty -0.245 Chroma Entropy    0.381 

Table 2. Outcome of the multiple linear regression analysis using acoustic features and 
physiological features onto the coordinates of the emotion space.  

 
   Excitement          β         Pleasantness         β 

Fluctuation 0.481 Mode        0.551 
Enthropy 0.293 Key Clarity        0.221 
Novelty -0.23 Chroma Enthropy        0.334 

1 diff EMGZ std -0.11 1 diff EMGZ min        0.25 
SC Ratio -0.15 BVP min       -0.231 

6   Conclusions 

In the present paper, the relationships between acoustic and physiological features 
in emotion perception of Romantic music were investigated. A model based on a set 
of acoustic parameters and physiological features was systematically explored. The 
regression analysis shows that low- and high-level acoustic features such as 
Fluctuation, Entropy and Novelty combined with physiological features such as the 
first derivative of EMG Zygomaticus and Skin Conductance are efficient in modeling 
the emotional component of excitement. Further, acoustic features such as Mode, Key 
Clarity and the Chromagram combined with the minimum of the first derivative of 
EMG zygomaticus and blood volume pulse effectively model the emotional 
component of pleasantness. Using the existing approach merging acoustic and 
physiological features boosts the correlation with behavioral estimates of subjective 
feeling in listeners in terms of excitement and pleasantness. Results show an increase 
in the prediction rate of the model of 4% for excitement and 10% for pleasantness 
when psychophysiological measures are added to acoustic features.  
Future work will explore and investigate by means of a similar model which low- and 
high-level acoustical and physiological features influence human judgments on 
semantic descriptions and perceptual qualities such as speed, articulation, harmony, 
timbre and pitch.  
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