CCA and a Multi-way Extension for Investigating Common Components between Audio, Lyrics and Tags.

Matt McVicar¹ and Tijl De Bie² \star

Intelligent Systems Lab, University of Bristol matt.mcvicar@bristol.ac.uk, tijl.debie@gmail.com

Abstract. In our previous work, we used canonical correlation analysis (CCA) to extract shared information between audio and lyrical features for a set of songs. There, we discovered that what audio and lyrics share can be largely captured by two components that coincide with the dimensions of the core affect space: valence and arousal. In the current paper, we extend this work significantly in three ways. Firstly, we exploit the availability of the Million Song Dataset with the MusiXmatch lyrics data to expand the data set size. Secondly, we now also include social tags from Last.fm in our analysis, using CCA also between the tag space and the lyrics representations as well as between the tag and the audio representations of a song. Thirdly, we demonstrate how a multi-way extension of CCA can be used to study these three datasets simultaneously in an incorporated experiment. We find that 2-way CCA generally (but not always) reveals certain mood aspects of the song, although the exact aspect varies depending on the pair of data types used. The 3-way CCA extension identifies components that are somewhere in between the 2-way results and, interestingly, appears to be less prone to overfitting.

Keywords: Canonical Correlation Analysis, Mood Detection, Million Song Dataset, MusiXmatch, Last.fm.

1 Introduction

In this paper we ask what is shared between the audio, lyrics and social tags of popular songs. We employ canonical correlation analysis (CCA) to find maximally correlated projections of these three feature domains in an attempt to discover commonalities and themes. In our previous work [16] we attempted to maximise the correlation between audio and lyrical features and discovered that the optimal correlations related strongly to the mood of the piece.

We extend this work significantly in three ways. Firstly, we make use of the recently-available Million Song Dataset (MSD,[1]) to gather a large number of audio and lyrical features, verifying our previous work on a larget dataset. Secondly, we incorporate a third feature space based on social tags from Last.fm¹.

^{*} This work was partially supported by the EPSRC grant number EP/E501214/1

¹ www.last.fm

On these three datasets we are able to conduct pairwise 2-dimensional CCA on the largest public dataset of this type currently available. Lastly, we demonstrate how 3-dimensional CCA can be used to investigate these data simultaneously, leading to a multi-modal analysis of three aspects of music. Whilst it was intuitive to us in our previous work that lyrics and audio would have mood in common, it is less clear to us what commonalities are shared between the other pairs of datasets. We therefore take a more serendipitous approach in this study, aiming to discover which features are most strongly related.

The rest of this paper is arranged as follows. In the remainder of this Section we discuss the relevant literature and background to our work. We detail our data collection methods, feature extraction, and framework in Section 2. Section 3 deals with the theory of CCA in 2 and 3 dimensions. In Section 4 we present our findings, which are discussed and concluded in Section 5.

1.1 The Core Affect Space

Although it may be the case that our CCA analysis leads to components other than emotion, we suspect that many will relate to the mood of the piece. We therefore review the analysis of mood in this Subsection.

Russell [17] proposed a method for placing emotions onto a two-dimensional valence-arousal space, known in psychology as the core affect space [18]. The valence of a word describes its attractiveness/aversiveness, whilst the arousal relates to the strength, energy or activation. An example of a high valence, high arousal word is ecstatic, whilst depressed would score low on both valence and arousal. A third dimension describing the dominance of an emotion has also been suggested [6], but rarely used by researchers. A more detailed visualisation of the valence/arousal space with example words is shown in Figure 1.

1.2 Relevant Works

The valence/arousal space has been used extensively by researchers in the field of automatic mood detection from audio. Harmonic and spectral features were used by [8], whilst in [5] they utilised low-level features such as the spectral centroid, rolloff, flux, slope, skewness and kurtosis. Time-varying features in the audio domain were employed by various authors [15, 20], which included MFCCs and short time Fourier transforms. For classification, many authors have utilised SVMs, which have been shown to successfully discriminate between features [9].

In the lyrical domain, [7] used bag-of-words (BoW) models as well as n-grams and term frequency-inverse document frequency (TFIDF) to classify mood based on lyrics, whilst [10] made use of the experimentally deduced affective norms of english words (ANEW) to assign valence and arousal scores to individual words in lyrics. Both of these studies were conducted on sets of 500-2,000 songs.

The first evidence of combining text and audio in mood classification can be seen in [21]. They employed BoW text features and psychological features for classification and demonstrated a correlation between the verbal emotion features and the emotions experienced by the listeners on a small set of 145

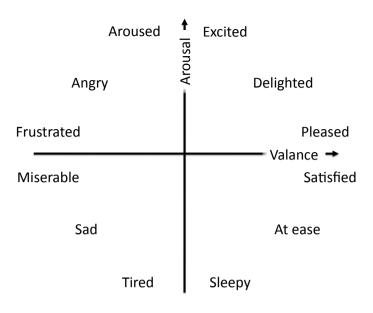


Fig. 1: The 2-dimensional valence/arousal space as proposed by Russell [17]. Words with high valence are more positive, whilst low valence words are pessimistic. High/low arousal words are energetic/restful respectively.

songs. A larger study was conducted in [13] where they classified 1,000 songs into 4 mood categories and found that by combining audio and lyrical features an increase in recognition accuracy was observed.

In the tag domain, [14] used the social website Last.fm to create a semantic mood space using latent semantic analysis. Via the use of a self-organising map, they reduce this high-dimensional space to a 2-D representation and compared this to Russell's valence/arousal space, with encouraging results.

In combining tag and audio data, [3] demonstrated that tag features were more informative than audio, whilst the combination was more informative still. This was conducted on a set of 1,612 songs and up to 5 mood or theme categories. Finally, a recent study considered regression of musical mood in continuous dimensional space using combinations of audio, lyrics and tags on a set of 2,648 UK pop songs [19].

Whilst insightful in terms of features and classification techniques, all of the studies previously mentioned were conducted on small datasets by todays standards (all significantly less than 10,000 songs). In this paper we address this issue in a truly large-scale, multi-modal analysis. We discuss our feature extraction and framework for our analysis in the following Section. Matt McVicar and Tijl De Bie

2 Data Collection & Framework

This section details our data collection methods and the motivation for our approach. We found the overlap of the Million Song, MusiXmatch and Last.fm datasets to be 223,815 songs in total, which was comprised of 197,436 training songs and 26,379 test songs. After removing songs which contained empty features, no lyrics or no tags, as well as those not in English, we were left with 101,235 (88%) training songs and 13,502 test songs (12%).

2.1 The Million Song Dataset

Devised as a way for researchers to conduct work on musical data without the need to purchase a large number of audio files, the Million Song Dataset was released on Feb 8^{th} , 2011. We downloaded this dataset in its entirety and extracted from it features relating to the audio qualities of the music. The features we specifically computed are shown in Table 1. We also give our interpretation of the features extracted, although there are some (e.g. danceability) where we are unsure of the feature extraction process.

r pretations.	
Feature	Interpretation
Mean Bar Confidence	Average bar stability
Std Bar Confidence	Variation in bar stability
Mean Beat Confidence	Average beat stability
Std Beat Confidence	Variation in beat stability
Danceability	Danceability of track
Duration	Total track time in seconds
Key	Track harmonic centre (major keys only)
Key Confidence	Confidence in Key
Loudness	Loudness of track
Mode	Modality (major or minor) of track
Mode Confidence	Confidence in Mode
Mean Sections Confidence	Average confidence in section boundaries
Std Sections Confidence	Variation in section boundary confidences
Mean Seg. Conf.	Average confidence in segment boundaries
Mean Timbres 1-12	12 features relating to average sound quality
Std Timbres 1-12	12 features related to variation in sound quality
Tempo	Speed in Beats Per Minute
Loudness Max	Total maximum of track loudness
Loudness Start	Local max of loudness at the start of the track
Tatums Confidence	Confidence in tatum prediction
Time Signature	Predicted number of beats in a bar
Time Signature Confidence	Confidence in time signature

Table 1: List of audio features extracted from the million song dataset, with interpretations.

2.2 MusiXmatch

An addition to the MSD, the MusiXmatch dataset contains lyrical information for a subset of the million songs. The features are stored in bag-of-words format (for copyright reasons), and are stemmed versions of the top 5,000 words in the database. In order to ensure we had meaningful words, we restricted ourselves to the words which were part of the ANEW dataset [4], which reduced our dataset to 603 words. We converted the BoW data to a term frequency-inverse document frequency (TFIDF) score [11] via the following transformation.

Let the term frequency of the i^{th} feature from the j^{th} song be simply the BoW feature normalised by the count of this lyric's most frequent word:

$$TF_{i,j} = \frac{|\text{word } i \text{ appears in lyric } j|}{\text{maximum word count of lyric } j}$$

where $|\cdot|$ denotes 'number of'. The inverse document frequency measures the importance of a word in the database as a whole and is calculated as:

$$IDF_i = \log \frac{\text{total number of lyrics}}{|\text{lyrics containing word } i| + 1}$$

(we include the +1 term to avoid potentially dividing by 0). The TFIDF score is then the product of these two values:

$$TFIDF_{i,j} = TF_{i,j} \times IDFi$$

The TFIDF score gives an indication of the importance of a word within a particular song and the entire database. Note that we used the ANEW database simply to construct a dictionary of words which contain some emotive content - no experimental valence/arousal or mood scores were incorporated into our feature matrix.

2.3 Last.fm Data

The Last.fm data contains information on user-generated tags and artist similarities, although we neglect the latter for the purpose of this study. The dataset contains information on 943,347 tracks matched to the MSD and tag counts for each song. We discovered 522,366 unique tags although only considered tags which appeared in at least 1,000 songs, which resulted in 829 features. The top tags from the dataset were *Rock, Pop, Alternative, Indie* and *Electronic*. We constructed a TF-IDF score for each tag in each song analogously to the previous section. Although it would have been possible to filter the tags according to the ANEW database as per the lyrics, we know that tags contain information other than mood, such as genre data. We are optimistic that our algorithm may pick up such information, and so did not filter the Last.fm tags.

2.4 Framework

In our previous work [16] we introduced an exploratory framework for the use of CCA in correlating audio and lyrical features. We briefly recap this framework for 2-way CCA before extending it to use in 3 datasets.

We are interested in what is consistent between the audio, lyrics and tags of a song. In previous work, researchers have searched for a function f which maps audio to mood [f(audio) = mood], else from lyrics or tags [g(lyrics) = mood,h(tags) = mood]. In our 2-way CCA we seek functions which satisfy one of:

$$f(audio) \approx g(lyrics)$$

$$f(audio) \approx h(tags)$$

$$g(lyrics) \approx h(tags)$$

to a good approximation and for a large number of songs. Previously, we assumed that the first relationship in the above equations captured some aspect of mood, knowing of no other commonalities between the audio and lyrics of a song. This was verified by using 2-way CCA to find such functions f and g. In this study, we take a more serendipitous approach. We will use 2-way CCA on each pair of datasets and see which kinds of commonalities are found. Perhaps they will relate to mood, but we hope to discover other relationships and correlations within the data. The extension of this work to 3 dimensions follows a similar framework. We now seek functions f, g and h such that:

$$f(audio) \approx g(lyrics) \approx h(tags)$$
 (1)

simultaneously. Again, these functions will not hold true for every song, but we hope they are approximately true for a large number of songs. The next Section deals with the theory of canonical correlation analysis.

3 Canonical Correlation Analysis and a 3-Way Extension

3.1 2-Way CCA

Given two datasets $X \in \mathbb{R}^{n \times d_x}$ and $Y \in \mathbb{R}^{n \times d_y}$, canonical correlation analysis finds what is consistent between them. This is realised by finding projections of X and Y through the dataset which maximise their correlation. In other words, we seek weight vectors $w_x \in \mathbb{R}^{d_x}$, $w_y \in \mathbb{R}^{d_y}$ such that the angle θ between Xw_x and Yw_y is minimised:

$$\{w_x^*, w_y^*\} = \underset{w_x, w_y}{\operatorname{argmin}} \ \theta(Xw_x, Yw_y)$$

Conveniently, this can be realised as a generalised eigenvector problem (a full derivation can be found in, for example, [2]):

$$\begin{pmatrix} 0 & X^T Y \\ Y^T X & 0 \end{pmatrix} \begin{pmatrix} w_x \\ w_y \end{pmatrix} = \lambda \begin{pmatrix} X^T X & 0 \\ 0 & Y^T Y \end{pmatrix} \begin{pmatrix} w_x \\ w_y \end{pmatrix}$$
(2)

In our experiments, X and Y will represent data matrices formed from the MSD, MusiXmatch or Last.fm datasets. The eigenvalue λ is the achieved correlation between the two datasets and (w_x, w_y) are the importance of each vector in the corresponding data space. The eigenvectors corresponding to λ can be sorted by magnitude to give a rank of feature importance in each of the data spaces.

3.2 3-Way CCA

Whilst it will be insightful to see the pairwise 2-way correlations between the three datasets, it would be more satisfying to investigate what is consistent between all 3 simultaneously. Various ways of exploring this have been explored in [12] - a natural extension in our setting can be motived as follows. Consider three datasets $X \in \mathbb{R}^{n \times d_x}$, $Y \in \mathbb{R}^{m \times d_y}$, $X \in \mathbb{R}^{p \times d_z}$. We motivate the correlation of these three variables graphically. Consider 3 datasets and (for ease of plotting) 3 songs within this set. A potential set of projections Xw_X, Yw_Y , and Zw_Z is shown in Figure 2.

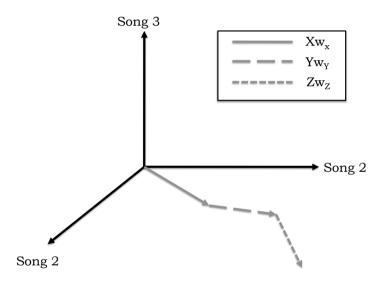


Fig. 2: Motivation for 3-way CCA on 3 example songs, showing the projections Xw_X, Yw_Y, Zw_Z .

It is clear that the three projections are strongly correlated if the norm of their sum is large. However, this is easy to obtain if each of the projections is arbitrarily large. We therefore enforce the constraint that the individual lengths Matt McVicar and Tijl De Bie

are bounded, and solve the following optimization problem:

$$\max_{w_x, w_y, w_z} \|Xw_x + Yw_y + Zw_z + 1\|^2$$

s.t. $\|Xw_X\|^2 + \|Yw_Y\|^2 + \|Zw_Z\|^2 = 1$

Solving the above via the method of Lagrange multipliers, we obtain

$$\frac{1}{2}\frac{\partial}{\partial w_*} \Big[\|Xw_X + Yw_Y + Zw_Z\|^2 - \lambda \Big(\|Xw_X\|^2 + \|Yw_Y\|^2 + \|Zw_Z\|^2 \Big) \Big] = 0$$

where the asterix * represents partial differentiation with respect to the appropriate variable. This leads to the simultaneous equations

$$X^T X w_X + X^T Y w_Y + X^T Z w_Z - \lambda X^T X w_X = 0$$

$$Y^T X w_X + Y^T Y w_Y + Y^T Z w_Z - \lambda Y^T X w_Y = 0$$

$$Z^T X w_X + Z^T Y w_Y + Z^T Z w_Z - \lambda Z^T Z w_Z = 0$$

which, in matrix form, is

$$\begin{pmatrix} 0 & X^T Y & X^T Z \\ Y^T X & 0 & Y^T Z \\ Z^T X & Z^T Y & 0 \end{pmatrix} \begin{pmatrix} w_X \\ w_Y \\ w_Z \end{pmatrix} = (\lambda - 1) \begin{pmatrix} X^T X & 0 & 0 \\ 0 & Y^T Y & 0 \\ 0 & 0 & Z^T Z \end{pmatrix} \begin{pmatrix} w_X \\ w_Y \\ w_Z \end{pmatrix}$$
(3)

Substituting $\lambda \to \lambda - 1$, we see that 3-dimensional CCA is an obvious extension of the 2-dimensional set-up seen in Equation 2. Note however that the λ is now a generalisation of the notion of correlation, and is not necessarily bounded in absolute value by 1. In our setting, the datasets X, Y and Z represent the MSD, MusiXmatch and Last.fm datasets and our aim will be to maximise the correlation between them. Our experimental results using pairwise CCA and 3-way CCA are presented in the next Section.

4 Experiments

4.1 Audio - Lyrical CCA

We begin with a reproduction of our previous work [16] which uses CCA on audio and lyrical datasets. This will serve to verify our method scales to datasets of realistic sizes. The projections of the Audio and Lyrical datasets, ranked by test correlation magnitude, are shown in Table 2. In each pairwise CCA experiments we found the significance of the correlations under a χ^2 distribution to be numerically 0, owing to the extremely large data sizes. It is therefore more important to look at the magnitude of the correlations rather than their significance in the following experiments.

These projections agree with our previous finding that mood is one of the common components between audio and lyrics. In the first component, words

Table 2: Features with largest weights using Audio and Lyrical features in 2-way CCA, first 3 CCA components. Training correlations on the first three components were 0.5032, 0.4484 and 0.2409 whilst the corresponding test correlations were 0.5034, 0.4286 and 0.2875.

CCA	54, 0.4280 and 0.		Highest				
Comp.	Lyrical Feature	Lyrical Weight	Lyrical Paper	Lyrical Weight			
	Death	-0.0358	Love	0.0573			
	Dead	-0.0274	Baby	0.0394			
1	Burn	-0.0239	Blue	0.0197			
	Hate	-0.0219	Girl	0.0190			
	Pain	-0.0204	Man	0.0170			
	Audio Feature	Audio Weight	Audio Feature	Audio Weight			
	Loudness Max	-0.6824	Mean Timbre 1	0.6559			
	Loudness	-0.0711	Mean Seg. Conf.	0.1638			
1	Duration	-0.0413	Loudness Start	0.1539			
	Mean Timbre 10	-0.0311	Mean Timbre 5	0.0698			
	Std Timbre 6	-0.0222	Mean Timbre 6	0.0649			
	Low			hest			
			Lyrical Feature				
	Dream	-0.0182	Man	0.0354			
	Love	-0.0177	Hit	0.0325			
2	Heart	-0.0142	Girl	0.0303			
	Fall	-0.0117	Rock	0.0291			
	Lonely	-0.0113	Baby	0.0268			
	Audio Feature		Audio Feature	Audio Weight			
	Loudness Max	-0.5568	Mean Timbre 1	0.7141			
	Loudness Start	-0.2846	Loudness	0.1424			
2	Std Seg. Conf.	-0.0855	Std Timbre 8	0.1233			
	Std Timbre 4	-0.0525	Mean Seg. Conf.	0.1227			
	Std Timbre 1	-0.0402	Mean Timbre 8	0.0446			
	Low		Highest				
		. –	Lyrical Feature				
	Baby	-0.0304	Man	0.0572			
	Fight	-0.0281	Love	0.0409			
3	Hate	-0.0223	Dream	0.0341			
	Girl	-0.0223	Child	0.0301			
	Scream	-0.0199	Dark	0.0295			
	Audio Feature	0		Audio Weight			
	Mean Timbre 1	-0.6501	Loudness Max	0.5613			
	Loudness Start	-0.2281	Duration	0.1874			
3	Std Timbre 6	-0.1507	Loudness	0.1377			
	Std Seg. Conf.	-0.0898	Std Timbre 8	0.1050			
	Tatums Conf.	-0.0850	Std Timbre 10	0.0891			

with low weights appear more aggressive, whilst more optimistic words have the highest weights. This suggests that this CCA component has captured the notion of valence. Audio features in this domain show that high valence songs are loud, whilst low valence words have important timbre features.

The second CCA component appears to have identified relaxed lyrics at one extreme and more active words at the other. We consider this to be a realisation of the arousal dimension. In the audio domain, loudness and timbre again seems to play an important role. It is more difficult to interpret the third CCA component, although the sharp decay of test correlation values show that the first two CCA components dominate the analysis.

4.2 Audio - Tag CCA

We now investigate 2-way CCA on audio/tag data, using Last.fm tags in place of the lyrical data from Subsection 4.1. Components 1-3 are shown in Figure 3.

The first component of this CCA analysis seems to have found that the maximal correlation can be obtained by having tags associated with metal tags at one extreme and more serene tags at the other. The audio features in this CCA component seems to be well described by the later timbre features.

In the second component, we also see an obvious trend, with modern urban genre tags receiving high weights and more traditional music at the other. In the audio space, these genres seem to be associated with timbre and audio features.

The correlations between these two sets is so strong that we can even interpret the third CCA component, which has identified modern electronic music and acoustic blues/country as strongly opposing tags in this dimension. Interestingly, components 2 and 3 appear to have identified two distinct types of 'oldies' music (folk/blues respectively). In the audio domain these are accompanied by structural stability (segment/tatum confidence) features.

4.3 Lyrical - Tag CCA

The first three CCA components of this experiment are shown in Figure 4.

In the first component it seems we are distinguishing heavy metal genres from less aggressive styles. In the lyrical domain we see that the words with low weights hold strongly negative valence; those with high weights are more optimistic. The authors find the notion of Melodic Black Metal somewhat oxymoronic.

The second component also has a clear trend - extremes in this dimension appear to be hip-hop/rap vs. worship music. We postulate that this represents the dominance dimension mentioned in the Introduction, with the lyrical weights corroborating this. In the third component we see no particular trend, which is supported by the low correlation of 0.1807. Comparison with the training correlation of 0.4826 suggests that this component is suffering from overfitting.

4.4 3-way Experiment

We display our results from 3-way CCA in Table 5.

Table 3: Features with largest weights using Audio and Tag Features in 2-way CCA, first 3 CCA components. Training correlations on the on these components were 0.7361, 0.6432 and 0.5725 whilst the corresponding test correlations were 0.5685, 0.5237 and 0.3428 respectively.

CCA	Lowe	\mathbf{est}	Highest					
comp.	Tag Feature	Tag Weight	Tag Feature	Tag Weight				
	Female Vocalists	-0.0352	Metal	0.0672				
	Acoustic	-0.0304	Death Metal	0.0542				
1	Singer-Songwriter	-0.0289	Brutal Death Metal	0.0425				
	Classic country	-0.0271	Punk rock	0.0378				
	Folk	-0.0265	Metalcore	0.0371				
	Audio Feature	-	Audio Feature	Audio Weight				
	Mean Timbre 1	-0.5314	Loudness Max	0.7460				
	Loudness Start	-0.1700	Std Timbre 6	0.0988				
1	Mean Timbre 6	-0.1558	Mean Timbre 2	0.0500				
	Mean Seg. Conf.	-0.1469	Mean Timbre 3	0.0491				
	Mean Timbre 5	-0.1021	Std bar Conf.	0.0267				
	Lowe	est	Highe					
	Tag Feature	Tag Weight	Tag Feature	Tag Weight				
	Oldies	-0.0153	Hip-Hop	0.0418				
	Beautiful	-0.0132	Dance	0.0355				
2	60s	-0.0126	Hip hop	0.0353				
	Singer-Songwriter	-0.0116	Rap	0.0351				
	Folk	-0.0110	Rnb	0.0231				
	Audio Feature	0	Audio Feature	Audio Weight				
	Loudness Start	-0.5069	Mean Timbre 1	$\begin{array}{c} 0.7522 \\ 0.1248 \\ 0.0578 \end{array}$				
	Loudness Max	-0.3506	Loudness					
2	Mean Timbre 6	-0.0631	Std Timbre 8					
	Std Timbre 1 -0.0374		Mean Timbre 4	0.0497				
	Std Seg. Conf.	-0.0360	Mean Timbre 10	0.0415				
	Lowe		Highe					
	Tag Feature	Tag Weight	Tag Feature	Tag Weight				
	Electronic	-0.0284	Oldies	0.0335				
_	Dance	-0.0220	Classic Blues	0.0325				
3	Vocal Trance	-0.0198	Classic country	0.0290				
	Epic	-0.0186	50s	0.0279				
	Pop	-0.0181	Delta blues	0.0250				
	Audio Feature		Audio Feature	Audio Weight				
	Mean Timbre 1	-0.6988	Loudness Max	0.6416				
_	Mean Timbre 4	-0.1141	Mean Timbre 3	0.1404				
3	Tatums Conf.	-0.0649	Mean Seg. Conf.	0.0757				
	Duration	-0.0589	Mean Timbre 6	0.0732				
	Std Segs Conf.	-0.0556	Loudness Start	0.0507				

Table 4: Features with largest weights using Lyrical and Tag Features in 2-way CCA, first three CCA components. Training correlations on these components were 0.5828, 0.4990 and 0.4826 whilst test correlations were 0.3984, 0.3713 and 0.1807 respectively.

CCA								
comp.	Lyrical Feature		Lyrical Feature Lyrical Weight					
	Death	-0.1851	Love	0.2330				
	Dead	-0.1201	Baby	0.1807				
	Human	-0.1049	Girl	0.0792				
1	God	-0.0993	Christmas	0.0726				
	Pain	-0.0925	Blue	0.0679				
	Tag Feature	Tag Weight	Tag Feature	Tag Weight				
	Brutal Death Metal	-0.3029	Xmas	0.0785				
	Death Metal	-0.2470	Female Vocalists	0.0718				
1	Metal	-0.2449	Oldies	0.0688				
	Melodic black metal	-0.2029	Pop	0.0680				
	Black metal	-0.1338	Rnb	0.0652				
	Lowe		High					
	Lyrical Feature	Lyrical Weight	Lyrical Feature	Lyrical Weight				
	Hit	-0.1448	Christmas	0.4082				
	Man	-0.1267	Snow	0.0907				
2	Rock	-0.1180	Glory	0.0607				
	Money	-0.1073	Joy	0.0549				
	Brother	-0.0999	Angel	0.0530				
	Tag Feature	Tag Weight	Tag Feature	Tag Weight				
	Hip hop	-0.2312	Xmas	0.4111				
	Rap	-0.2014	Christmas	0.1679				
2	Hip-Hop	-0.1927	Christian	0.0662				
	Gangsta Rap	-0.1460	Female Vocalists	0.0501				
	Underground hip hop		Worship	0.0480				
	Lowe		High					
	Lyrical Feature		Lyrical Feature					
	Love	-0.0273	Christmas	0.6031				
	Heart	-0.0262	Snow	0.0992				
3	Rain	-0.0247	Man	0.0800				
	Alone	-0.0229	Rock	0.0716				
	Dream	-0.0224	Hit	0.0702				
	Tag Feature	Tag Weight	Tag Feature	Tag Weight				
	Love	-0.0399	Xmas	0.5932				
	Female vocalists	-0.0257	Christmas	0.2381				
3	Alternative rock	-0.0252	Hip hop	0.1265				
	Rain	-0.0237	Rap	0.0975				
	Oldies	-0.0227	Hip-Hop	0.0906				

each data space (audio, lyrical, tag) occupying the columns. The generalised training correlations on the first three components were found to be 2.1749, 2.0005, and 1.76559 whilst the generalised test correlations were found to be 2.1809,2.0036 and 1.7595	(recall that these generalised correlations are not necessarily bounded in absolute value by 1). Abbreviations: $DM = Death$ Metal, $BM = Black$ Metal, $SS = Singer-Songwriter$, $FV = Female Vocalists$, $AR = Alternative Rock$, $UHH = Underground$		Highest Lowest Highest Lowest Highest	t Audio Feature Weight Word Weight Word Weight Tag Feature Weight Tag Feature Weight	8 Mean Timbre 1 - 0.6664 Death -0.0346 Love - 0.0572 Metal -0.0581 FVs - 0.0242 Metal -0.0381 Vs - 0.0242 Metal -0.0381 Ns - 0.0242 Metal -0.0381 Ns - 0.0242 Metal -0.0381 Ns - 0.0381	2 Loudness Start 0.1906 Dead -0.0272 Baby 0.0382 DM -0.0517 Pop 0.0189	3 Mean Segs Conf. 0.1553 Hate -0.0220 Blue 0.0179 Brutal DM -0.0510 Classic Country 0.0183	5 Mean Timbre 6 0.0925 Burn -0.0216 Girl 0.0171 Melodic BM -0.0348 Oldies 0.0176	5 Mean Timbre 5 0.0766 Pain -0.0191 People 0.0147 Metalcore -0.0267 Soul 0.0167	3 Mean Timbre 1 0.6797 Dream -0.0161 Hit 0.0372 Beautiful -0.0183 Hip Hop 0.0630	7 Loudness 0.2063 Love -0.0131 Man 0.0343 FVs -0.0130 Hip-Hop 0.0625	9Std Timbre 8 0.1238 Heart -0.0123 Rock 0.0320 Ambient -0.0113 Rap 0.0596	8 Mean Segs Conf. 0.1031 Home -0.0114 Girl 0.0291 Christian -0.0112 Gangsta Rap 0.0333	Mean Timbre 10 0.0480 Sad -0.0111 Baby 0.0283 Mellow -0.0106 UHH 0.0260	4 Loudness Max 0.6402 Girl -0.0124 Man 0.0268 Dance -0.0266 Folk 0.0239	3 Loudness 0.0756 Fight -0.0124 Blue 0.0177 Rock -0.0207 Brutal DM 0.0208	7 Mean Timbre 6 0.0672 Crash -0.0107 Death 0.0176 Pop -0.0183 Melodic BM 0.0195	2 Duration 0.0558 Alive -0.0104 Christmas 0.0156 AR -0.0174 Acoustic 0.0176	7 Mean Timbre 3 0.0472 Baby -0.0100 Dark 0.0136 Electronic -0.0162 Classic Country 0.0171
lyrical, tag) occupying the coll, 2.0005, and 1.76559 whilst th alised correlations are not nec tal, SS = Singer-Songwriter, ⁷	Highest	Weight Audio Feature Weight	-0.7008 Mean Timbre 1 0.6064	0.0442 Loudness Start 0.1906	0.0426 Mean Segs Conf. 0.1555		Mean Timbre 10 -0.0255 Mean Timbre 5 0.0766	-0.4676 Mean Timbre 1 0.6797	0.4107 Loudness 0.2065	0.0899 Std Timbre 8 0.1238	0.0568 Mean Segs Conf. 0.103	0.0469 Mean Timbre 10 0.0480	0.7004 Loudness Max 0.6402	-0.1666 Loudness 0.0756		0.0683 Duration 0.0558	-0.0547 Mean Timbre 3 0.0475		
each data space (audio, were found to be 2.1749,	(recall that these general. Metal, $BM = Black Meta$	hip hop.	CCA Lowest	Comp. Audio Feature	Loudness Max -	- Loudness	1 Std Timbre 6 -	Duration -	Mean Timbre 10 -	Loudness Max -	Loudness Start -	2 Std Segs Conf	Std Timbre 1 -	Std Timbre 4 -	Mean Timbre 1 -	Loudness Start -	4	Std Timbre 6 -	Std Segs Conf

Table 5: Summary of 3-way CCA analysis. CCA components are shown in rows, with the highest and lowest-weighted features of

Investigating Common Components between Audio, Lyrics and Tags

Matt McVicar and Tijl De Bie

In this incorporated experiment, the most prevalent dimension appears to relate to arousal - highly weighted tags and features are gentle in nature, with aggressive tags, lyrics and audio features. The second component seems to represent arousal. We struggle to find an explanation for the third component.

5 Discussion & Conclusions

In this Section, we discuss some of the findings from the previous Section, summarise the conclusions of our study and suggest areas for future work.

5.1 Discussion

It is clear there are similar components in this study across different experiments. For instance, the first component of the audio/lyrical 2-way CCA experiment in the lyrical domain (first few rows of Table 2) were very similar to the first component in the lyrical domain in the 3-way experiment (first rows of Table 5, second cell). It appears that both of these discovered dimensions are capturing the valence of the lyrics. To verify that these projections were indeed similar, we computed the correlation between them (ie Yw_Y from Table 2 with Yw_Y from Table 5), and found it to be 0.9979. The conclusion to be drawn is that the valence of lyrics is very easily captured, by comparing with audio and/or tag information.

We now turn our attention to the second CCA component. Interested in what 3-Way CCA analysis offered over pairwise CCA experiments, we investigated the correlations between each pair of lyrical and tag projections from all three experimental set-ups (2 pairwise and 3-Way). These are shown in Table 6.

Table 6: Comparison of Lyrical and Tag projections in pairwise and 3-way experiments.

(b) Tag Projections

			()	0 0	
CCA	Y	WY	CCA	Z	W_Z
comp. 2	Lyrics/Tags	3-Way CCA	comp. 2	Tags/Lyrics	s 3-Way CCA
Lyrics/Audio	0.8679	0.9899	Tags/Audio	0.7534	0.8853
Lyrics/Tags	-	0.8886	Tags/Lyrics	-	0.9434

(a) Lyrical Projections

The first of these tables can be interpreted as follows. Recall that in the lyricsaudio CCA experiment we found the second component to describe the arousal of the lyrics. In the lyrics-tag space we found the second lyrical component related to the dominance of the lyrics. Recall that the correlations are equivalent to the angles between the projected datasets. Table 6(a) therefore shows that the cosines of the angles between these vectors and the third CCA component are 0.9899 and 0.8886 respectively, but that the cosine of the angle between themselves is 0.8679. This shows that the 3-Way CCA component sits somewhere between arousal and dominance, which can be verified by looking at the top and bottom-ranked words in Tables 2, 3 and 5.

A similar, and in fact stronger pattern can be observed in tag space by investigating Table 6(b). Again, the 3-way CCA analysis seems to be an intermediate between the 'old vs new' dimension observed in the audio-tag space (Table 3, second component) and the dominance discovered in the lyrical-tag space (Table 4, second component).

5.2 Conclusions & Further Work

In this paper, we have conducted a large-scale study of the correlations between audio, lyrical and tag features based on the Million Song Dataset. By the use of pairwise 2-dimensional CCA we demonstrated that the optimal correlations between these datasets appear to have reconstructed the valence/arousal/dominance dimensions of the core affect space, even though this was in no way imposed by the algorithm. In some cases, we discovered components which appeared to capture some genre information, such as the third component of Table 3.

By using 3-dimensional CCA, we studied the 3 datasets simultaneously and discovered that valence and arousal were the most correlated features. The correlations beyond 2 or 3 components are difficult to interpret, which fits well studies which describe the core affect space as a 2 or 3 dimensional space.

In our future work we would like to investigate different multiway CCA extensions such as those seen in [12], perhaps on new datasets as they are released. We also would like to more thoroughly investigate regularization techniques to avoid overfitting.

References

- Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song dataset. In Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011), 2011.
- T. De Bie, N. Cristianini, and R. Rosipal. Eigenproblems in pattern recognition. In E. Bayro-Corrochano, editor, Handbook of Computational Geometry for Pattern Recognition, Computer Vision, Neurocomputing and Robotics. Springer-Verlag, 2004.
- K. Bischoff, C.S. Firan, R. Paiu, W. Nejdl, C. Laurier, and M. Sordo. Music mood and theme classification-a hybrid approach. In *Proc. of the Intl. Society for Music Information Retrieval Conf., Kobe, Japan*, 2009.
- M.M. Bradley and P.J. Lang. Affective norms for english words (anew): Instruction manual and affective ratings. University of Florida: The Center for Research in Psychophysiology, 1999.
- J.J. Burred, M. Ramona, F. Cornu, and G. Peeters. Mirex-2010 single-label and multi-label classification tasks: ircamclassification09 submission. *MIREX 2010*, 2010.

- R. Cowie, E. Douglas-Cowie, B. Apolloni, J. Taylor, A. Romano, and W. Fellenz. What a neural net needs to know about emotion words. *Computational intelligence* and applications, pages 109–114, 1999.
- H. He, J. Jin, Y. Xiong, B. Chen, W. Sun, and L. Zhao. Language feature mining for music emotion classification via supervised learning from lyrics. *Advances in Computation and Intelligence*, pages 426–435, 2008.
- X. Hu and J.S. Downie. When lyrics outperform audio for music mood classification: a feature analysis. In *Proceedings of ISMIR*, pages 1–6, 2010.
- X. Hu, J.S. Downie, C. Laurier, M. Bay, and A.F. Ehmann. The 2007 mirex audio mood classification task: Lessons learned. In *Proceedings of the 9th International Conference on Music Information Retrieval*, pages 462–467. Citeseer, 2008.
- Y. Hu, X. Chen, and D. Yang. Lyric-based song emotion detection with affective lexicon and fuzzy clustering method. In *Proceedings of ISMIR*, 2009.
- K.S. Jones. A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1):11–21, 1972.
- J.R. Kettenring. Canonical analysis of several sets of variables. *Biometrika*, 58(3):433–451, 1971.
- C. Laurier, J. Grivolla, and P. Herrera. Multimodal music mood classification using audio and lyrics. In *Machine Learning and Applications*, 2008. ICMLA'08. Seventh International Conference on, pages 688–693. IEEE, 2008.
- C. Laurier, M. Sordo, J. Serra, and P. Herrera. Music mood representations from social tags. In *Proceedings of the 10th International Society for Music Information Conference, Kobe, Japan.* Citeseer, 2009.
- M.I. Mandel. Svm-based audio classification, tagging, and similarity submissions. online Proc. of the 7th Annual Music Information Retrieval Evaluation eX-change (MIREX-2010), 2010.
- M. McVicar, T. Freeman, and T. De Bie. Mining the correlation between lyrical and audio features and the emergence of mood. In *Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011)*, 2011.
- J.A. Russell. A circumplex model of affect. Journal of personality and social psychology, 39(6):1161, 1980.
- J.A. Russell. Core affect and the psychological construction of emotion. *Psychological review*, 110(1):145, 2003.
- B. Schuller, F. Weninger, and J. Dorfner. Multi-modal non-prototypical music mood analysis in continous space: reliability and performances. In Proc. of the 12th International Society for Music Information Retrieval (ISMIR) Conference, pages 759–764, 2011.
- K. Seyerlehner, M. Schedl, T. Pohle, and P. Knees. Using block-level features for genre classification, tag classification and music similarity estimation. *Submission* to Audio Music Similarity and Retrieval Task of MIREX 2010, 2010.
- D. Yang and W.S. Lee. Disambiguating music emotion using software agents. In Proceedings of the 5th International Conference on Music Information Retrieval (ISMIR04), pages 52–58, 2004.