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Abstract. We describe our implementation of two neural networks: a static 
feedforward network, and an Elman network, for predicting mean 
valence/arousal ratings of participants for musical excerpts based on audio 
features. Thirteen audio features were extracted from 12 classical music 
excerpts (3 from each emotion quadrant). Valence/arousal ratings were 
collected from 45 participants for the static network, and 9 participants for the 
Elman network. For the Elman network, each excerpt was temporally 
segmented into four, sequential chunks of equal duration. Networks were 
trained on eight of the 12 excerpts and tested on the remaining four. The static 
network predicted values that closely matched mean participant ratings of 
valence and arousal. The Elman network did a good job of predicting the 
arousal trend but not the valence trend. Our study indicates that neural networks 
can be trained to identify statistical consistencies across audio features to 
predict valence/arousal values.  
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1   Introduction 

A common reason for engaging in music listening is that music is an effective means 
of conveying and evoking emotions. Although these emotions may be subjective, 
based in part on the listener’s cultural and musical background, there are 
commonalities in perceived emotion across different listeners based on the 
characteristics of the music. Several studies have attempted to predict emotion 
conveyed during music listening. Some studies have explored the relationship 
between physiological activity experienced by a listener and perceived emotion [1-2]. 
Others have explored the relationship between perceived emotion and the 
musical/acoustic features themselves [3-4]. While acknowledging that individual 
differences exist in the emotion conveyed by any one piece of music, we believe that 
it is legitimate to consider the modal appraisal and that this appraisal may be 
predicted on the basis of features extracted from the music. 

Various methods have been used to represent emotion perceived by listeners. One 
common method, described by Russell’s circumplex [5], involves representing 
emotion using a two-dimensional space with valence on the x-axis and arousal on the 
y-axis. Schubert [3] used the circumplex model to identify the relationship between 
musical features and perceived emotion. Changes in loudness and tempo were 
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positively correlated with changes in arousal, and melodic contour was positively 
correlated with valence. A few studies [4, 6] have used machine-learning techniques 
to predict discrete emotion categories based on audio features in musical excerpts. 
Laurier et al. [4] extracted timbral, tonal, and rhythmic audio features from film 
soundtrack excerpts that were evaluated by participants, for five different emotions. 
Based on this data, Laurier et al. used Support Vector Machines to classify excerpts 
into the five discrete emotions.  

As opposed to classifying a musical excerpt into a discrete emotion category, our 
aim was to apply machine-learning techniques towards predicting valence and arousal 
values on the two-dimensional emotion space based on Russell’s circumplex. A 
nonlinear regression function that predicts valence/arousal values offers a significant 
contribution to existing methods relating audio-based features to perceived emotion 
because, there are situations when participants may be unclear on the type of emotion 
conveyed by the music due to the overlapping and/or ambiguous nature of some 
emotions. In such cases, dimensional ratings provide a more effective means of 
representing the emotion conveyed by the music. We used machine learning, 
specifically feedforward neural networks, for predicting ratings on valence and 
arousal dimensions.  

Although neural networks have been applied extensively in domains such as object 
recognition, speech and text recognition, they have been relatively underutilized in 
music cognition and music informatics. We designed two separate networks to predict 
listeners’ mean valence and arousal ratings associated with musical excerpts. The first 
network was a standard, static feedforward neural network designed to predict 
valence and arousal ratings for the entire excerpt. The second network was an Elman 
network designed to predict valence and arousal ratings for 30-second increments of 
the excerpt while using the previous 30 seconds as context, to understand how context 
might influence ratings over time. 

2   Feature Extraction and Data Collection 

We used 12 classical music excerpts from 12 different composers as stimuli (see 
Table 1). Each excerpt lasted 120 seconds. These excerpts were selected such that 
three excerpts represented each of the four emotion quadrants in Russell’s 
circumplex: high arousal, positive valence (Happy), high arousal, negative valence 
(Agitated), low arousal negative valence (Sad), and low arousal, positive valence 
(Peaceful). Excerpts were chosen based on previous work investigating emotional 
responses to music [7-8]. Using MIRtoolbox [9], we extracted 13 low- and mid-level 
features pertaining to dynamics, rhythm, timbre, pitch and tonality: rms, lowenergy, 
eventdensity, tempo, pulseclarity, zerocross, centroid, spread, rolloff, brightness, 
irregularity, inharmonicity, and mode. Values of all the features were normalized 
between 0 and 1. For the standard feedforward neural network, we used data from 45 
participants (37 females, 2 males, 6 unknown; Mage=24.8, SDage=8.2) with limited 
musical training. Participants heard each excerpt and rated two dimensions of 
emotion: unpleasant vs. pleasant (i.e., valence) and calm vs. excited (i.e., arousal) on a 
scale from 1 (least pleasant/least excited) to 9 (most pleasant/most excited). For the 
Elman network, we collected data from 9 participants (5 females, 4 males; Mage=30.4, 
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SDage=6.8) with music training. Each of the 12 excerpts lasting 120 seconds was 
broken into four sequential segments of equal duration totaling 48 separate segments. 
For each excerpt, participants heard the four 30-second segments in sequence. After 
each segment, they provided their valence/arousal ratings following the same 
procedure as was used for the previous 45 participants. For the second, third, and 
fourth sequential segments of each melody, participants were told to assume that these 
segments were a continuation of the previous segment when providing their ratings. 
The same 13 features were extracted from each of the 48 segments using MIRtoolbox.  

Table 1.  12 music excerpts with composers, emotion quadrants, and mean participant ratings.  

 

3   Methods 

In this section we describe the linear and nonlinear regression methods that were used 
to (a) examine the relationship between audio features and valence/arousal ratings, 
and (b) predict valence/arousal ratings based on audio features1.  

3.1   Correlation of Audio Features with Emotion Ratings  

As a first step towards understanding the pattern by which audio features might 
account for emotion ratings, we conducted correlational analyses between features 
and mean valence/arousal ratings of the 45 participants for the 12 excerpts. We 
performed a bivariate correlation analysis with the valence/arousal ratings as the first 
variable, and each of the 13 features as the second variable. We found a significant, 
strong positive correlation between arousal and five audio features: pulseclarity (r(10) 
= .79, p < .01), zerocross (r(10) = .66, p < .05), centroid (r(10) = .80, p < .01), rolloff 
(r(10) = .80, p < .01), and brightness (r(10) = .73, p < .01). For valence, apart from a 
significant, positive correlation with lowenergy (r(10) = .59, p < .05) and a 
marginally significant correlation with mode (r(10) = .55, p = .06), there was no 
correlation with the remaining audio features. 

                                                             
1 Ground truth data is available at http://www.ryerson.ca/~nvempala/cmmr2012data.html 
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3.2   Multiple Regression for Predicting Emotion Ratings 

Given that there was some significant correlation between a subset of the 13 audio 
features and valence/arousal ratings, we performed multiple linear regression to check 
for a linear relationship between features and ratings. We performed stepwise 
regression with features as independent variables (probability of F to enter = .05) and 
valence/arousal ratings as dependent variables. The model for arousal, Equation 1, 
was significant (F(2,9) = 18.3, p < .01) with centroid as the only predictor, 
accounting for 64.7% of the variance. The model for valence, Equation 2, was 
significant (F(2,9) = 5.4, p < .05) with lowenergy as the only predictor, accounting 
for 35.1% of the variance. Here, yArousal and yValence are the arousal and valence values 
on a scale from 1 to 9, respectively. In both equations, the addition of other variables 
did not lead to an increase in the explained variance. These results clearly suggest that 
a linear combination of the features does not account well for the valence and arousal 
ratings of participants. Hence we explored the possibility of predicting valence and 
arousal ratings through nonlinear combinations of audio features using neural 
networks. 
 

yArousal = 4.94 xcentroid + 2.14 . (1) 

 
 Here, yArousal is the magnitude of arousal on a scale from 1 to 9.  
 

yValence = 2.12 xlowenergy + 4.19 . (2) 

3.3   Neural Networks for Predicting Emotion Ratings  

3.3.1   Static Neural Network 
 
Our first network implementation was a supervised, feedforward network with 
backpropagation. Our goal was to train the network to predict mean participant 
valence and arousal values for musical excerpts. We used one set of hidden units for 
our network. Network architecture consisted of 13 input units, 13 hidden units, and 
two output units as shown in Figure 1(a). As seen in Table 1, the mean 
valence/arousal ratings for each of the 12 music excerpts aligned with its expected 
emotion quadrant. Since valence and arousal ratings were from 1 to 9 and were 
plotted on the x and y axes respectively, happy excerpts needed to have values of x > 
5.0, y > 5.0; agitated excerpts needed to have values of x < 5.0, y > 5.0; sad excerpts 
needed to have values of x < 5.0, y < 5.0; and peaceful excerpts needed to have values 
of x > 5.0, y < 5.0. From the 12 music excerpts, we randomly chose two out of three 
excerpts from each quadrant for our training set, which consisted of M1, M2 
(agitated), M4, M5 (happy), M7, M8 (peaceful), and M10, M11 (sad). The test set 
consisted of the remaining four excerpts M3 (agitated), M6 (happy), M9 (peaceful), 
and M12 (sad). 
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(a)         (b)   
Fig. 1. (a) Static neural network with 13 input units, 13 hidden units, and two output units. Whi 
indicates connection weights from input units to hidden units. Woh indicates connection weights 
from hidden units to output units. Only a subset of the 13 input and hidden units are shown. (b) 
Elman network architecture showing input units, hidden units, output units, and context units. 
Hidden units from previous processing step are copied into context units for current step. 

The network’s task was to provide the valence and arousal values based on the 13 
audio features. The output values fell within a range of 0 to 1. Since desired outputs 
were average valence/arousal ratings provided by participants on a scale from 1 to 9, 
the network outputs were rescaled back. The training set consisted of eight input and 
output arrays. Each input array had 13 values, one for each audio feature, and its 
corresponding output array had the two desired arousal and valence values. For 
example, if the input array being fed into the network was the feature set for excerpt 
M1 (Bartok), then the input array was [rms, lowenergy, … , mode]= [0.5748, 0.7579, 
… , 0.0052]T. Mean participant valence and arousal ratings for M1 were 5.9 and 4.8 
respectively, resulting in normalized ratings of 0.61 and 0.48, respectively. Hence the 
desired output array would be [arousal, valence]=[0.61, 0.48]T. To avoid overfitting 
the network, we kept the number of hidden units equal to the number of input units. 
The network was built, trained, and tested using the MATLAB programming 
language. The following procedure was used for training and testing the network: 

 
1. Connection weights Whi (input units to hidden units) and Woh (hidden units to 

output units) were initialized to random numbers close to zero.  
2. Input arrays were fed to the network from the training set in a randomized order. 

Inputs were passed through a sigmoidal function, multiplied with the connection 
weights Whi, and summed at each hidden unit. Hidden unit values were obtained 
by passing the summed value at each hidden unit through a sigmoidal function. 
These values were multiplied with the connection weights Woh, summed at each 
output unit, and passed through a sigmoidal function to arrive at the final output 
value for each output unit. Network outputs were compared to desired outputs 
and the error was computed. The backpropagation algorithm was applied and 
changes in connection weights were stored. At the end of the entire epoch, 
connection weights were updated with the sum of all stored weight changes. 

3. The network was trained for approximately 10000 epochs by repeating step 2 to 
reduce the mean squared error to less than 0.01, and tested. During training, the 
learning rate parameter was initially set to 0.3 and reduced over time. 
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We obtained results as shown in Figure 2. The results show the network did a good 

job of predicting valence/arousal values for M3 (Stravinsky), M9 (Schumann), and 
M12 (Mozart). Although, predicted values for M6 (Strauss) fell in the expected 
quadrant (happy), they were not as close to the mean participant ratings. For the 
purpose of quantifying the network’s performance, we computed the Cartesian 
distance between the mean participant rating and network-predicted value over all 
four test melodies. The network’s performance error was 1.14 on average (on a scale 
from 1 to 9) or 14.3%, indicating that the network accuracy was 85.7%. These results 
clearly suggest that a nonlinear relationship exists between music audio features and 
their associated valence/arousal ratings. 
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Fig. 2. Mean participant valence/arousal ratings (on a scale of 1 to 9) and corresponding neural 
network outputs for the four test melody excerpts. NN indicates neural network output. 

3.3.2   Elman Neural Network for Predicting Emotion Ratings  

Although the static network’s performance was satisfactory, the network’s 
implementation was based on participant valence/arousal ratings for the entire  
120-second duration of each excerpt. It is reasonable to assume that a listener’s 
appraisal of valence and arousal at any point in an excerpt is dynamic and sensitive to 
the previous few seconds of context. Hence, our next goal was to understand how 
context might influence a listener’s ratings over time. Unlike a typical feedforward 
network, an Elman network uses context from the previous time-step as additional 
input for the current time-step. The architecture of the Elman network was almost 
identical to the static network with 13 input units for features, 13 hidden units, and 
two outputs units. The network had one additional component, which was a set of 13 
context units, as shown in Figure 1(b). Context units were connected to the hidden 
units similar to input units, and had connection weights associated with them. For 
each step of input processing in the network, values of hidden units from the previous 
step were copied to the context units. This is explained below. 

Each of the 12 music excerpts was broken into four equal chunks of 30-second 
duration, and data was collected for the 48 segments from 9 participants, as explained 
in Section 2. The network was trained on the same 8 music excerpts and tested on the 
remaining four excerpts, as chosen for the previous network to allow consistent 
comparison of network performance. The range of input and output values was 
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identical to the static network. Since the network was being trained on the mean 
participant data for eight different melodic excerpts, and each excerpt had four 30-
second segments, the training set consisted of 32 input and output arrays (four for 
each excerpt). The four input arrays for each excerpt were sequentially fed into the 
network. Context units were first initialized to 0. After the input array corresponding 
to the first segment was processed by the network, values of hidden units were copied 
into context units for processing the second segment. This process of one-to-one copy 
from hidden units to context units was continued for the third and fourth segments. 
This procedure was repeated for all eight excerpts. The network was built, trained, 
and tested using the MATLAB programming language. The procedure used for 
training and testing the network was identical to what was used for the static network. 
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Fig. 4. Mean participant valence (right) and arousal (left) ratings (on a scale of 1 to 9) and 
corresponding neural network outputs for the four sequential 30-second segments of two 
excerpts. NN indicates neural network output. 

We computed the mean error between participant ratings and network-predicted 
outputs across all segments of all four test melodies based on Cartesian distance. The 
network predicted at an average accuracy of 54.3% for all four segments. However, it 
performed better at predicting valence/arousal values for the final 30-second segment, 
at an average accuracy of 60%. Figure 4 shows a comparison of mean participant 
valence/arousal ratings and network values for excerpts M3 and M12. For arousal, the 
results clearly show that the network was good at predicting how participant ratings 
were influenced by context from previous segments – i.e., the trend over time was 
reasonably captured. However, for valence, although the relative changes over time 
are captured by the network to some extent, the absolute values are poorly predicted. 

4   Conclusions and Future Directions 

Our aim was to use neural networks to predict valence and arousal ratings of musical 
excerpts based on audio features within music. Results from the static network 
indicate that a network can be trained to identify statistical consistencies across audio 
features abstracted from music and satisfactorily predict valence/arousal values that 
closely match mean participant ratings. Our second goal was to highlight the role of 
musical context during listeners’ appraisal of emotional content within music, and 
enable a neural network to utilize previous context during prediction. Results from the 
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Elman network showed that our network was more successful in capturing the trend 
of participant appraisals for arousal rather than valence. Three important 
improvements could be made to our current study involving emotion prediction.  

First, having already trained a static network, we would like to identify features 
that are contributing most towards prediction of valence and arousal. This may be 
done by removing each feature and testing the network’s performance in a step-by-
step fashion. Second, a neural network’s predictions depend largely on the size and 
type of training set provided. We intend to train our networks on larger datasets for 
improved generalizability. We also intend to develop separate static networks that 
will be trained on different types of musical genres and ratings drawn from different 
types of music listeners (e.g., trained vs untrained). This would enable us to (a) 
predict emotion ratings for an excerpt based on its genre and type of listener; and (b) 
identify salient music audio features for each genre and type of listener. Finally, we 
would like to improve the performance of our Elman network by training the network 
on data from a larger set of participants. 
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