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Abstract. In this paper, we present a feature-based approach to au-
tomatically estimate the string number in recordings of the bass guitar
and the electric guitar. We perform different experiments to evaluate the
classification performance on isolated note recordings. First, we analyze
how factors such as the instrument, the playing style, and the pick-up
settings affect the performance of the classification system. Second, we
investigate, how the classification performance can be improved by re-
jecting implausible classifications as well as aggregating the classification
results over multiple adjacent time frames. The best results we obtained
are f-measure values of F = .93 for the bass guitar (4 classes) and F = .90
for the electric guitar (6 classes).

Keywords: string classification, fretboard position, fingering, bass gui-
tar, electric guitar, inharmonicity coefficient

1 Introduction

On string instruments such as the bass guitar or the guitar, most notes within the
instrument’s pitch range can be played at multiple positions on the instrument
fretboard. Each fretboard position is defined by a unique string number and a
fret number. Written music representations such as common music notation do
not provide any information about the fretboard position where each note is
to be played. Instead, musicians often have to choose an appropriate fretboard
position based on their musical experience and stylistic preferences. The tablature
representation, on the other hand, is specialized on the geometry of fretted string
instruments such as the guitar or the bass guitar. It specifies the fretboard
position for each note and thus resolves the ambiguity between note pitch and
fretboard position. Fig. 1 illustrates a bass-line represented both as score and as
tablature.

Conventional automatic music transcription algorithms extract score-related
parameters such as the pitch, the onset, and the duration of each note. In order
to analyze recordings of string instruments, the fretboard position needs to be
estimated as an additional parameter. The ability to automatically estimate the
fretboard position allows to generate a tablature and is therefore very useful for
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Fig. 1: Score and tablature representation of a bass-line. The four horizontal lines
in the tablature correspond to the four strings with the tuning E1, A2, D2, and
G2 (from bottom to top). The numbers correspond to the fret numbers on the
strings that are to be played.

music assistance and music education software. This holds true especially if this
software is used by beginners who are not familiar with reading musical scores.
As will be discussed in Sect. 3, various methods for estimating the fretboard
position were proposed in the literature so far, ranging from audio-based meth-
ods to methods that exploit the visual modality or that use attached sensors
on the instrument. However, the exclusive focus on audio analysis methods for
this purpose has several advantages: In music performance scenarios involving
a bass guitar or electric guitar, the instrument signal is accessible since these
instruments need to be amplified. In contrast, video recordings of performing
musicians and the instrument neck are often limited in quality due to move-
ment, shading, and varying lighting conditions on stage. Additional sensors that
need to be attached to the instrument are often obtrusive to the musicians and
affect their performance. Therefore, this paper focuses on a sole audio-based
analysis.

This paper is structured as follows: We outline the goals and challenges of
this work in Sect. 2. In Sect. 3, we discuss existing methods for estimating
the fretboard position from string instrument recordings. A new approach solely
based on audio-analysis is detailed in Sect. 4, starting with the spectral modeling
of recorded bass and guitar notes in Sect. 4.1 and the note detection in Sect. 4.2.
Based on the audio features explained in Sect. 4.2, we illustrate how the fretboard
position is automatically estimated in Sect. 4.3. In Sect. 5, we present several
evaluation experiments and discuss the obtained results. Finally, we conclude
our work in Sect. 6.

2 Goals & Challenges

We aim to estimate the string number ns from recorded notes of the bass guitar
and the electric. Based on the note pitch P and the string number, we can apply
knowledge on the instrument tuning to derive the fret number nf and thus a
complete description of the fretboard position. In the evaluation experiments
described in Sect. 5, we investigate how the classification results are affected
by separating the training and test data according to different criteria such as
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Automatic String Detection 3

the instruments, the pick-up (PU) settings, and the applied playing techniques.
Furthermore, we analyze if a majority voting scheme that combines multiple
string classification results for each note can improve the classification perfor-
mance. The main challenge is to identify suitable audio features that allow to
discriminate between notes that, on the one hand, have the same fundamen-
tal frequency f0 but, on the other hand, are played on different strings. The
automatic classification of the played string is difficult since the change of fin-
gering alters the sonic properties of the recorded music signal only subtly. Classic
non-parametric spectral estimation techniques such as the Short-Time Fourier
Transform (STFT) are affected by the spectral leakage effect: the Fourier Trans-
form of the applied window function limits the achievable frequency resolution to
resolve closely located spectral peaks. In order to achieve a sufficiently high fre-
quency resolution for estimating the harmonic frequencies of a note, rather larger
time frames are necessary. The decreased time resolution is disadvantageous if
notes are played with frequency modulation techniques such as bending or vi-
brato, which cause short-term fluctuations of the harmonic frequencies [1]. This
problem is especially impeding in lower frequency bands. Thus, a system based
on classic spectral estimation techniques is limited to analyze notes with only
a slow-varying pitch, which can be a severe limitation for a real-word system.
Since we focus on the bass guitar and the electric guitar, frequencies between
41.2 Hz and 659.3 Hz need to be investigated as potential f0-candidates1.

3 Related Work

In this section, we discuss previous work on the estimation of the played string
and the fretboard position from bass and guitar recordings. First, we review
methods that solely focus on analyzing the audio signal. Special focus is put
on the phenomenon of inharmonicity. Then, we compare different hybrid meth-
ods that incorporate computer vision techniques, instrument enhancements, and
sensors.

3.1 Audio Analysis

Penttinen et al. estimated the plucking point on a string by analyzing the delay
times of the two waves on the string, which travel in opposite directions after the
string is plucked [21]. This approach solely focuses on a time-domain analysis
and is limited towards monophonic signals. In [3], Barbancho et al. presented an
algorithm to estimate the string number from isolated guitar note recordings.
The instrument samples used for evaluation were recorded using different playing
techniques, different dynamic levels, and guitars with different string material.
After the signal envelope is detected in the time-domain, spectral analysis based
on STFT is applied to extract the spectral peaks. Then, various audio features
1 This corresponds to the most commonly used bass guitar string tunings E2 to G3
and electric guitar string tuning E3 to E5, respectively, and a fret range up to the
12th fret position.
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4 Jakob Abeßer

related to the timbre of the notes are extracted such as the spectral centroid,
the relative harmonic amplitudes of the first four harmonics, and the inhar-
monicity coefficient (compare Sect. 3.1). Furthermore, the temporal evolution of
the partial amplitudes is captured by fitting an exponentially decaying envelope
function. Consequently, only one feature vector can be extracted for each note.
As will be shown in Sect. 4.2, the presented approach in this paper allows to
extract one feature vectors on a frame-level. This allows to accumulate classi-
fication results from multiple (adjacent) frames of the same note recording to
improve the classification performance (compare Sect. 4.3). The authors of [3] re-
ported diverse results from the classification experiments. However, they did not
provide an overall performance measure to compare against. The performance of
the applied classification algorithm strongly varied for different note pitch values
as well as for different compilations of the training set in their experiments.

In [2], Barbancho et al. presented a system for polyphonic transcription of
guitar chords, which also allows to estimate the fingering of the chord on the gui-
tar. The authors investigated 330 different fingering configuration for the most
common three-voiced and four-voiced guitar chords. A Hidden Markov Model
(HMM) is used to model all fingering configurations as individual hidden states.
Based on an existing multi-pitch estimation algorithm, harmonic saliency values
are computed for all possible pitch values within the pitch range of the gui-
tar. Then, these saliency values are used as observations for the HMM. The
transitions between different hidden states are furthermore constrained by two
models—a musicological model, which captures the likelihood of different chord
changes, and an acoustic model, which measures the physical difficulty of chang-
ing the chord fingerings. The authors emphasized that the presented algorithm is
limited towards the analysis of solo guitar recordings. However, it clearly outper-
formed a state-of-the-art chord transcription system. The applied dataset con-
tained instrument samples of electric guitar and acoustic guitar. Maezawa et al.
proposed a system for automatic string detection from isolated bowed violin note
recordings in [16]. Similar to the bass guitar, the violin has 4 different strings,
but in a higher pitch range. The authors analyzed monophonic violin recordings
of various classical pieces with given score information. First, the audio signal is
temporally aligned to the musical score. For the string classification, filterbank
energies are used as audio features and a Gaussian Mixture Model (GMM) as
classifier. The authors proposed two additional steps to increase the robustness
of the classification. First, feature averaging and feature normalization are used.
Then, a context-dependent error correction is applied, which is based on em-
pirically observed rules how musicians choose the string number. The authors
investigated how training and test with the same and different instruments and
string types affect the classification scores (similar to Sect. 5). The highest F-
measure value that was achieved for the string classification with 4 classes is
F = .86.

Inharmonicity For musical instruments such as the piano, the guitar, or the
bass guitar, the equation describing the vibration of an ideal flexible string is

570



Automatic String Detection 5

extended by a restoring force caused by the string stiffness [7]. Due to dispersive
wave propagation within the vibrating string, the effect of inharmonicity occurs,
i.e., the purely harmonic frequency relationship of an ideal string is distorted
and the harmonic frequencies are stretched towards higher values as

fk = kf0

√
1 + βk2; k ≥ 1 (1)

with k being the harmonic index of each overtone and f0 being the fundamen-
tal frequency. The inharmonicity coefficient β depends on different properties
of the vibrating string such as Young’s Modulus E, the radius of gyration K,
the string tension T , the cross-sectional area S, as well as the string length L.
With the string length being approximately constant for all strings of the bass
guitar and the electric guitar, the string diameter usually varies from 0.45 mm
to 1.05 mm for electric bass and from 0.1 mm to 0.41 mm for electric guitar2.
The string tension T is proportional to the square of the fundamental frequency
of the vibrating string. Järveläinen et al. performed different listening tests to
investigate the audibility of inharmonicity towards humans [12]. They found
that the human audibility threshold for inharmonicity increases with increasing
fundamental frequency.

Hodgekinson et al. observed a systematic time-dependence of the inharmonic-
ity coefficient if the string is plucked hard [10]. The authors found that β does
not remain constant but increases over time for an acoustic guitar note. In con-
trast, for a piano note, no such behavior was observed. In this paper, we aim
to estimate β on a frame-level and do not take the temporal evolution of β into
account.

Different methods have been applied in the literature to extract the inhar-
monicity coefficient such as the cepstral analysis, the harmonic product spec-
trum [8], or inharmonic comb-filter [9]. For the purpose of sound synthesis,
especially for physical modeling of string instruments, inharmonicity is often
included into the synthesis models in order to achieve a more natural sound [24].
The inharmonicity coefficient of different instruments was analyzed as a distinc-
tive feature in different Music Information Retrieval tasks such as instrument
recognition and music transcription.

3.2 Hybrid Approaches & Visual Approaches

Different methods for estimating the fretboard position from guitar recordings
were presented in the literature that include analysis methods from computer
vision as a multi-modal extension of audio-based analysis.

A combined audio and video analysis was proposed by Hybryk and Kim
to estimate the fretboard position of chords that were played on an acoustic
guitar [11]. The goal of this paper was to first identify a played chord on the
guitar regarding its “chord style”, i.e., their root note and musical mode such
as minor or major. For this purpose, the Specmurt [22] algorithm was used for

2 These values correspond to commonly used string gauges.
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6 Jakob Abeßer

spectral analysis in order to estimate a set of fundamental frequency candidates
that can be associated to different note pitches. Based on the computed “chord
style” (e.g., E minor), the “chord voicing” was estimated by tracking the spatial
position of the hand on the instrument neck. The chord voicing is similar to the
chord fingering as described in [2].

Another multi-modal approach for transcribing acoustic guitar performances
was presented by Paleari et al. in [19]. In addition to audio analysis, the vi-
sual modality was analyzed to track the hand of the guitar player during his
performance to estimate the fretboard position. The performing musicians were
recorded using both two microphones and a digital video camera. The fretboard
was first detected and then spatially tracked over time.

Other approaches solely used computer vision techniques for spatial tran-
scription. Burns and Wanderley presented an algorithm for real-time finger-
tracking in [4]. They used attached cameras on the guitar in order to get video
recordings of the playing hand on the instrument neck. Kerdvibulvech and Saito
used a stereo-camera setup to record a guitar player in [13]. Their system for
finger-tracking requires the musician to wear colored fingertips. The main dis-
advantage of all these approaches is that both the attached cameras as well as
the colored fingertips are unnatural for the guitar player. Therefore, they likely
limit and impede the musician’s expressive gestures and playing style.

Enhanced music instruments are equipped with additional sensors and con-
trollers in order to directly measure the desired parameters instead of estimating
them from the audio or video signal. On the one hand, these approaches lead to a
high detection accuracy. On the other hand, these instrument extensions are ob-
trusive to the musicians and can affect their performance on the instrument [11].
In contrast to regular electric guitar pickups, hexaphonic pickups separately cap-
ture each vibrating string. In this way, spectral overlap between the string signals
is avoided, which allows a fast and robust pitch detection with very low latency
and very high accuracy, as shown for instance by O’Grady and Rickard in [18].

4 New Approach

Fig. 2 provides an overview over the string classification algorithm proposed in
this paper. All processing steps are explained in detail in the next sections.

4.1 Spectral Modeling

Non-parametric spectral estimation methods such as the Periodogram make no
explicit assumption on the type of signal that is analyzed. In order to obtain a
sufficiently high frequency resolutions for a precise f0-detection, relatively large
time frames of data samples are necessary in order to compensate the spectral
leakage effect, which is introduced by windowing the signal into frames. In con-
trast to the percussive nature of its short attack part (between approx. 20 ms
and 40 ms), the decay part of a plucked string note can be modeled by a sum
of decaying sinusoidal components. Their frequencies have a nearly perfectly
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Automatic String Detection 7

Fig. 2: Algorithm overview

harmonic relationship. Since the strings of the bass guitar and the electric gui-
tar have a certain amount of stiffness, the known phenomenon of inharmonicity
appears (compare Sect. 3.1).

Parametric spectral estimation techniques can be applied if the analyzed sig-
nal can be assumed to be generated by a known model. In our case, the power
spectral density (PSD) Φ(ω) can be modeled by an auto-regressive (AR) filter
such as

Φ(ω) ≈ ΦAR(ω) = σ2

∣∣∣∣
1

1 +
∑p
l=1 ale

−jlω

∣∣∣∣
2

(2)

with σ2 denoting the process variance, p denoting the model order, and
{al} ∈ Rp+1 being the filter coefficients. Since auto-regressive processes are
closely related to linear prediction (LP), both a forward prediction error and
a backward prediction error can be defined to measure the predictive quality of
the AR filter. We use the least-squares method (also known as modified covari-
ance method) for spectral estimation. It is based on a simultaneous least-squares
minimization of both prediction errors with respect to all filter coefficients {al}.
This method has been shown to outperform related algorithms such as the Yule-
Walker method, the Burg algorithm, and the covariance method (See [17] for
more details). The size of the time frames N is only restricted by the model
order as p ≤ 2N/3.

First, we down-sample the signals to fs = 5.5 kHz for the bass guitar samples
and fs = 10.1 kHz for the electric guitar samples. This way, we can detect the
first 15 harmonics of each note within the instrument pitch ranges, which is
necessary for the subsequent feature extraction as explained in Sect. 4.2. In Fig.
3, the estimated AR power spectral density for a bass guitar sample (E1) as
well as the estimated partials are illustrated. Since we only focus on isolated
instrument samples here, we assume the fundamental frequency f0 to be known
in advance. The separate evaluation of fundamental frequency estimation is not
within the scope of this paper.
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Fig. 3: Estimated AR power spectral density for the bass guitar sample with
pitch E1 (f0 = 44.1Hz). The estimated first 15 partials are indicated with red
crosses.

By using overlapping time frames with a block-size of N = 256 and a hop-
size of H = 64, we apply the spectral estimation algorithm to compute frame-
wise estimates of the filter coefficients {al(n)} in the frames that are selected
for analysis (compare Sect. 4.2). In order to estimate the harmonic frequencies
{fk}, we first compute the pole frequencies of the AR filter by computing the
roots of the numerator in Eqn. (2). Then, we assign one pole frequency to each
harmonic according to the highest proximity to its theoretical frequency value
as computed using Eqn. (1).

4.2 Feature Extraction

Note Detection In Sect. 4.1, we discussed that notes played on the bass gui-
tar and the guitar follow a signal model of decaying sinosoidal components, i.e.,
the partials. In this section, we discuss how we extract audio features that cap-
ture the amplitude and frequency characteristics. We first detect the first frame
shortly after the note attack part of the note is finished and the harmonic decay
part begins. As mentioned in Sect. 4.1, signal frames with a percussive charac-
teristic are indicated by high values of the process variance σ2(t) obtained the
AR spectral estimation. We found that time frames after

t? = arg max
t
σ2(t) (3)

are suitable for feature extraction. If the aggregation of multiple frame-wise
results is used, we extract features in the first 5 frames after t?.

Inharmonicity estimation In each analyzed frame, we estimate the discrete
frequencies fk of the first 15 partials. Then, we estimate the inharmonicity co-
efficient βk as follows. From Eq. (1), we obtain

(fk/f0)2 = k2 + βk4 (4)

We use polynomial curve fitting to approximate the left-hand side of Eq. (4) by
a polynomial function of order 4 as

(fk/f0)2 ≈
4∑

i=0

pik
i (5)
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Automatic String Detection 9

Feature Feature dimension

Inharmonicity coefficient β̂ 1
Relative partial amplitudes {âr,k} 15
Statistics over {âr,k} 8
Normalized partial frequency deviations {∆f̂norm,k} 15
Statistics over {∆f̂norm,k} 8
Partial amplitude slope ŝa 1

All features
∑

= 48

Table 1: Overview of all applied audio features.

and use the coefficient p4 as an estimate of the inharmonicity coefficient β:

β̂ ≈ p4 (6)

Partial-based Features In addition to the inharmonicity coefficient β, we
compute various audio features that capture the amplitude and frequency char-
acteristics of the first 15 partials of a note. First, we compute the relative am-
plitudes

{âr,k} = {ak/a0} (7)

of the first 15 partials related to the amplitude of the fundamental frequency.
Then, we approximate the relative partial amplitude values {âr,k} as a linear
function over k as

âr,k ≈ p1k + p0 (8)

by using linear regression. We use the feature ŝa = p1 as estimate of the spectral
slope towards higher partial frequencies.

Based on the estimated inharmonicity coefficient β̂ and the fundamental
frequency f0, we compute the theoretical partial frequency values {fk,theo} of
the first 15 partials based on Eq. (1) as

fk,theo = kf0

√
1 + β̂k2. (9)

Then, we compute the deviation between the theoretical and estimated partial
frequency values and normalize this difference value as

∆f̂norm,k =
fk,theo − f̂k

f̂k
. (10)

Again, we compute {∆f̂norm,k} for the first 15 partials and use them as features.
In addition, we compute the statistical descriptors maximum value, minimum
value, mean, median, mode (most frequent sample), variance, skewness, and
kurtosis over both {âr,k} and {∆f̂norm,k}. Tab. 1 provides an overview over all
dimensions of the feature vectors.

575



10 Jakob Abeßer

4.3 Estimation Of The Fretboard Position

String Classification In order to automatically estimate the fretboard po-
sition from a note recording, we first aim to estimate the string number ns.
Therefore, we compute the 48-dimensional feature vector {xi} as described in
the previous section. We use Linear Discriminant Analysis (LDA) to reduce the
dimensionality of the feature space to Nd = 3 dimensions for bass guitar and to
Nd = 5 dimensions for guitar3. Then we train a Support Vector Machine (SVM)
classifier using a Radial Basis Function (RBF) kernel with the classes defined by
notes played on each string. SVM is a binary discriminative classifier that at-
tempts to find an optimal decision plane between feature vectors of the different
training classes [25]. The two kernel parameters C and γ are optimized based on
a three-fold grid search. We use the LIBSVM library for our experiments [5].

The SVM returns probabilities {pi} to assign unknown samples to each string
class. We estimate the string number n̂s as

n̂s = arg max
i
{pi}. (11)

We derive the the fret number n̂f from the estimated string number n̂s by
using knowledge on the instrument tuning as follows. The common tuning of the
bass is E1, A2, D2, and G2; the tuning of the guitar is E2, A2, D3, G3, B3, and
E3. The string tunings can be directly translated into a vector of corresponding
MIDI pitch values as {PT } = [28, 33, 38, 43] and {PT } = [40, 45, 50, 55, 59, 64],
respectively.

In order to derive the fret number n̂s, we first obtain the MIDI pitch value
P that corresponds to the fundamental frequency f0 as

P = b12 log2(f0/440)− 69c (12)

Given the estimated string number n̂s, the fret number can be computed as

n̂f = P − PT (n̂s). (13)

A fret number of n̂f = 0 indicates that a note was played by plucking an open
string.

Plausibility Filter As mentioned earlier, most note pitches within the fre-
quency range of both the bass guitar and the guitar can be played on either one,
two, or three different fret positions on the instrument neck. The pitch ranges
are E2 to G3 for the bass guitar and E3 to E5 for the electric guitar considering
a fret range up to the 12th fret position. Based on knowledge about the instru-
ment tunings, we can derive a set of MIDI pitch values that can be played on
each string. Therefore, for each estimated MIDI pitch value P̂ , we can derive a
list of strings, where this note can theoretically be played on. If the plausibility
filter is used, we set the probability values in {pi} of all strings, where this note
can not be played on to 0 before estimating the string number as shown in Eq.
(11).
3 The number of dimensions Nd is chosen as Nd = Nstrings − 1 ≡ Nclasses − 1.
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Automatic String Detection 11

Aggregation of multiple classification results If the result aggregation is
used, we sum up all class probability values {pi} over 5 adjacent frames. Then we
estimate the string number as shown in Eq. (11) over the accumulated probability
values.

5 Evaluation & Results

5.1 Dataset

For the evaluation experiments, we use a dataset of 1034 audio samples. These
samples are isolated note recordings, which were taken from the dataset pre-
viously published in [23].4 The samples were recorded using two different bass
guitars and two different electric guitars, each played with two different plucking
styles (plucked with a plectrum and plucked with the fingers) and recorded with
two different pick-up settings (either neck pick-up or body pick-up).

5.2 Experiments & Results

Experiment 1: Feature Selection for String Classification In this ex-
periment, we aim to identify the most discriminant features for the automatic
string classification task as discussed in Sect. 4.3. Therefore, we apply the feature
selection algorithm Inertia Ratio Maximization using Feature Space Projection
(IRMFSP) [15,20] to all feature vectors and the corresponding class labels sepa-
rately for both instrument. In Tab. 2, the five features that are first selected by
the IRMFSP algorithm are listed for the bass guitar and the electric guitar.

The features ∆f̂norm, β̂, and âr,k as well as the derived statistic measures
were selected consistently for both instruments. These features measure fre-
quency and amplitude characteristics of the partials and show high discrimi-
native power between notes played on different strings independently of the ap-
plied instrument. The boxplots of the two most discriminative features ∆fnorm,9
for bass and ∆fnorm,15 for guitar are illustrated separately for each instrument
string in Fig. 4.

Since the deviation of the estimated harmonic frequencies from their theoret-
ical values apparently carries distinctive information to discern between notes on
different instrument strings, future work should investigate, if Eq. (1) could be
extended by higher order polynomial terms in order to better fit to the estimated
harmonic frequency values.

Experiment 2: String Classification in different conditions In this ex-
periment, we aim to investigate how the performance of the automatic string
classification algorithm is affected by
4 This dataset contains isolated notes from bass guitar and electric guitar processed
with various audio effects. In this work, only the non-processed note recordings were
used.
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12 Jakob Abeßer

Rank Bass Guitar Electric Guitar

1 ∆f̂norm,9 ∆f̂norm,15

2 β̂ mean{âr,k}
3 ∆f̂norm,3 var{∆f̂norm,k}
4 var{∆f̂norm,k} max{âr,k}
5 âr,4 skew{∆f̂norm,k}

Table 2: Most discriminative audio features for the string classification task as
discussed in Sect. 5.2. Features are given in order as selected by the IRMFSP
algorithm.

– the separation of the training and test set according to the applied instru-
ment, playing technique, and pick-up setting,

– the instrument / the number of string classes,
– the use of a plausibility filter (compare Sect. 4.3),
– and the use of a aggregation of multiple classification results for each sample

(compare Sect. 4.3).
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Fig. 4: Boxplots of the two most discriminative features for bass guitar and elec-
tric guitar.

The different conditions are illustrated in Tab. 3 for the bass guitar and in
Tab. 4 for the electric guitar. The colums “Separated instruments”, “Separated
playing techniques”, and “Separated pick-up setting” indicate which criteria were
applied to separate the samples from training and test set in each configuration.
The fifth and sixth column indicate whether the plausibility filter and the frame
result aggregation were applied. In the seventh column, the number of folds
for the configuration 1.6 and 2.6 and the number of permutations for the re-
maining configurations are given. The evaluation measures precision, recall, and
F-measure were always averaged over all permutations and all folds, respectively.
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1.5.a x 8� .62 .55 .54
1.5.b x x 8� .74 .71 .71
1.5.c x x x 8� .92 .92 .92

1.6.a 10? .92 .92 .92
1.6.b x 10? .93 .93 .93
1.6.c x x 10? .93 .93 .93

Table 3: Mean Precision P̄ , mean Recall R̄, and mean F-Measure F̄ for different
evaluation conditions (compare Sect. 5.2) for the bass guitar.

After the training set and the test set are separated, the columns of the
training feature matrix were first normalized to zero mean and unit variance.
The mean vector and the variance vector were kept for later normalization of the
test data. Subsequently, the normalized training feature matrix is used to derive
the transformation matrix via LDA. We chose N = NStrings − 1 as number of
feature dimensions. The SVM model is then trained using the projected training
feature matrix and a two-dimensional grid search is performed to determine the
optimal parameters C and γ as explained in Sect. 4.3. For the configurations 1.6
and 2.6, none of the criteria to separate the training and the test set was applied.
Instead, here we used a 10-fold cross-validation and averaged the precision, recall,
and F-measure over all folds.

The results shown in Tab. 3 and Tab. 4 clearly show that both the plausibility
filter as well as the result aggregation step significantly improve the classifica-
tion results in most of the investigated configurations. Furthermore, we can see
that the separation of training and test samples according to instrument, playing
technique, and pick-up setting has a strong influence on the achievable classi-
fication performance. In general, the results obtained for the bass guitar and
the electric guitar show the same trends. We obtain the highest classification
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2.1.a x 2� .64 .64 .63
2.1.b x x 2� .70 .70 .70
2.1.c x x x 2� .76 .75 .75

2.2.a x x 8� .69 .69 .68
2.2.b x x x 8� .71 .71 .70
2.2.c x x x x 8� .78 .77 .77

2.3.a x x 8� .61 .57 .56
2.3.b x x x 8� .68 .66 .66
2.3.c x x x x 8� .74 .74 .73

2.4.a x 8� .64 .61 .60
2.4.b x x 8� .71 .69 .69
2.4.c x x x 8� .80 .79 .79

2.5.a x 8� .69 .65 .65
2.5.b x x 8� .74 .72 .72
2.5.c x x x 8� .84 .84 .84

2.6.a 10? .72 .69 .70
2.6.b x 10? .81 .81 .81
2.6.c x x 10? .90 .90 .90

Table 4: Mean Precision P̄ , mean Recall R̄, and mean F-Measure F̄ for different
evaluation conditions (compare Sect. 5.2) for the electric guitar.

scores—F̄ = .93 for the bass guitar (4 classes) and F̄ = .90 for the electric gui-
tar (6 classes)—for the configurations 1.6 and 2.6. These results indicate that
the presented method can be successfully applied in different application tasks
that require an automatic estimation of the played instrument string. In contrast
to [16], we did not make use any knowledge about the musical context such as
derived from a musical score.

We performed a baseline experiment separately for both instruments using
Mel Frequency Cepstral Coefficients (MFCC) as features as well as LDA and
SVM for feature space transformation and classification, respectively (compare
Sect. 4.3). The same experimental conditions as in configuration 1.6. and 2.6.
(see Sect. 5.2) were used. The classification results were performed and evaluated
on a frame level. A 10-fold stratified cross-validation was applied and the results
were averaged over all folds. We achieved classification scores of F̄ = .46 for the
bass guitar and F̄ = .37 for electric guitar.
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6 Conclusions

In this paper, we performed several experiments towards the automatic classifi-
cation of the string number from given isolated note recordings. We presented
a selection of audio features that can be extracted on a frame-level. In order
to improve the classification results, we first apply a plausibility filter to avoid
non-meaningful classification results. Then, we use an aggregation of multiple
classification results that are obtained from adjacent frames of the same note.
Highest string classification scores of F̄ = .93 for the bass guitar (4 string classes)
and F̄ = .90 for the electric guitar (6 string classes) were achieved. As shown
in a baseline experiment, classification systems based on commonly-used audio
features such as MFCC were clearly outperformed for the given task.
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