
Music Listening as Information Processing

Eliot Handelman1 and Andie Sigler1,2

1 Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT)
2 School of Computer Science, McGill University

andrea.sigler@mail.mcgill.ca

Abstract. Computational reasoning about musical structure (in partic-
ular, pattern, shape, and motion), with a perceptual and mathematical
basis in simplicity.

Keywords: Musical structure, artificial intelligence, computer models,
simplicity

1 An Information Processing Task

Paralleling a theory of vision (as stated e.g. by Marr [1]), it is possible to treat
musical listening as an information processing task. In computational vision
research, input is known as “I” for image, and the goal is to find functions that
elucidate various properties of this image. The dual to this can be found in the
(drawing-automaton) work of Harold Cohen [2], who asks “what is the minimum
condition under which a set of marks functions as an image?” Both questions
are also fundamental questions for music research, with the “images” in question
being musical instead of visual.

Marr’s three levels of description for an information processing task are the
computational, the algorithmic, and the hardware. At the computational level,
we can ask what is the function (or program) to be computed; at the algorithmic
level we ask what are the types or the language in which such a function may
be expressed; at the hardware level, we ask how functions in the language can
be run on a physical computer (or brain).

This paper is focused at the algorithmic level, on the development of a few
types for reasoning about musical structure.3 The goal is to facilitate a higher
level of structural description, so that further studies at the computational level
(these may be statistical, musicological, generative, etc.) may be carried out on
multi-dimensional complexes of pattern and shape, rather than on sequences of
notes.

It is useful for a system of types to be composable. A composable system
is one in which higher-level types can always be built from lower-level types

3 These types have been implemented as part of a large-scale musical AI project, and
can be explored through an interactive visualization system. Promising experiments
have been made towards using types to direct “orchestrations” in order to sonify
aspects of an analysis.

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012)
19-22 June 2012, Queen Mary University of London
All rights remain with the authors.

371

2 Eliot Handelman and Andie Sigler

without having to define new types or composition functions at each new level.
For example, given a type list and a function to put (any) things together into
a list, we automatically get lists of lists of lists of lists and so on.

The types proposed for describing musical structure fall into the three cate-
gories of pattern, shape, and motion.4 These types are composable, allowing us
to speak of a pattern of patterns, a shaped and patterned motion, a pattern that
has a shape, and so on.5 With just a few definitions, therefore, it is possible to
build from local structure up to the large scale.

In order for types to be composable, it is necessary that they be rational
(i.e. logical or algebraic). Therefore, commonplace music-theoretic notions such
as the labeling of harmonies, keys, or typical forms are avoided. Any system
of labeling that is non-exhaustive is an empirical system, based on knowledge
(and theorization) of existing music. The rational methodology we propose is
exhaustive in the sense that we can’t “look for”ABA patterns without also seeing
AAA, ABB, ABC, ABCD, and so on. In the computational study of music, it
makes sense for a rational level to come first. Later studies may impose or deduce
an empirical level on top of the basic rational level, perhaps by constraining
general types to fit a particular theory or answer a particular question, or by
using statistical techniques on musical corpora.

Since questions of style and musical “language” are empirical, the utility of a
system of rational types should not depend on the kind of music to which they’re
applied. At a rational level of structural analysis, we do not need to know the
context or genre of the music in advance of the analysis.

What is required is a theorization of basic musical material and its possi-
bilities. For example, we assume nothing of a melody but that it’s a succession
of pitches, each with a duration, and that pitch may be represented as a total
ordering (i.e. for two pitches X and Y , there are exactly three options: X is
higher than Y , Y is higher than X, or they are equal). Given an input “image”
of this sort, what kinds of structures are inevitably found within?

1.1 Simplicity

On a strictly mathematical basis, there are many possible answers to the fore-
going question. To narrow the field, we can ask “what kinds of structures might
be interesting to explore?”

Since music is made by and for the human mind, an interesting analysis
might recognize the kinds of structures that would be most obvious to a hu-
man: simple structures. Simplicity is interesting because in music, as elsewhere,
the simplest things are the most salient (obvious), and certainly all music dis-
tinguishes within its discourses differing degrees of salience. Composing music
implies managing saliences, since it is these that bubble to the surface of a piece
of music, participating in its character. A structural musical analysis examining

4 A fourth category, texture, has not yet been developed.
5 As an example of a pattern with motion, consider ABABBABBBABBBBABBBBB,

where the B segments display a (patterned) growth.

372

Music Listening as Information Processing 3

the management of saliences has a chance of revealing something about how
music may be composed and how it may be heard.

Simplicity provides a perceptual basis for music analysis; it also serves as an
effective base case for reasoning, allowing a systematic analysis of basic musical
material. While we cannot speak of maximally complex music, the simplest ways
to make a piece of music can be enumerated.

Likewise, the simplest ways to make a pattern, a shape, or a motion can be
enumerated. The simplest pattern is just repetition of a single term: AAAAAA....
The simplest shapes (in a total ordering such as pitch, or loudness, or set cardi-
nality) are those that are described by just one orientiation: UP or DOWN or
SAME. Motion, as well, is simplest when it proceeds in just one direction.

1.2 Avoiding the Encoding Problem

The questions that follow are somewhat trickier: what is the next simplest pat-
tern? what are the next simplest shapes? And what are the next simplest patterns
and shapes after those?

It is tempting to devise a system to compose a few simple types such that
(for example) any pattern can be encoded under the system.6 After some initial
exploration, we decided to avoid the “encoding problem,” for the reasons that
follow.

Under any coding system, there may be several ways of encoding a given
pattern. We then must ask which encoding to prefer. A common solution is to
prefer the shortest encoding, since it compresses the pattern as much as possible,
thus making use of as much of the pattern’s inherent structure as possible.
However, the search for a shortest encoding is computationally hard (i.e. no
efficient, deterministic algorithm is known).7

Even if we do manage to find (or approximate) a shortest encoding, we are
left with a measure of pattern complexity (or entropy), and a single way of
maximally compressing the pattern. Our problem, however, was not to compress
the pattern, but to describe it in such a way that simplicities are indicated. This
may turn out to take up more bits than the original pattern, since there may be
many interesting things to point out which cannot all be summarized in a single
encoding.

We may instead ask for a few different encodings, or all possible encodings.
But this is still computationally hard, and still of limited utility for our problem.
Imagine we have a pattern that looks like alphabet soup, but every time the term
X appears, it is in a group of Xs such that each group is one term shorter than
the last. Depending on our coding system and the algorithm we use for finding
encodings, this regularity may or may not be expressed somewhere in our results.
But even if it is, it will be located in some encoding of the entire pattern, and

6 Something like this was attempted by [3], and much work was done along these lines
by structural information theorists [4, 5].

7 A non-deterministic, genetic approach to this problem is explored by [6].

373

4 Eliot Handelman and Andie Sigler

we will still have the task ahead of us of searching through our encodings for
simple patterns.

An alternative approach is to avoid the encoding of non-simple patterns, and
instead to focus on finding simple structures within them. In the alphabet-soup
example above, the system might not be able to provide a concise description of
the entire pattern, but it should be able to point out that in the X dimension,
at least, something simple is happening.

The total “dimensionality” of a piece of music is very large, and may be
impossible to enumerate. A structural description therefore can’t claim to be
exhaustive. Instead, general methods are developed to unyoke structures into
separate dimensions and to synchronize dimensions into higher-order dimensions.
The separation and resynchronization may be directed by a higher-level program,
randomized, guided by the simplicities discovered, or dictated by a combination
of these methods. The composable type system allows any number of dimensions
of pattern, shape, and motion to be explored without requiring the definition of
new types to represent them, or of new functions for discovering and analyzing
them.

In the remainder of this paper, we discuss a few primitive types and means
of combination for musical shape, pattern, and motion. Because space is limited
and work is ongoing, the description provided here is not of a complete system.

2 Shape

Shape can be built on the basis of orientation. Oriented shapes occur everywhere
in every oriented (or quantifiable) aspect of music, including pitch, loudness,
speed, density, and so on.

A simple shape called a chain is described by just one orientation, UP,
DOWN, or SAME. Given a melody, it is easy to decompose its pitch content
into a sequence of chains, with each chain overlapping the next by one pitch.

The chain is a simple type describing a local structure. It is recursively com-
posable to describe large-scale structure. Recursive chains are called Z-chains.8

2.1 Recursive Orientation: Z-chains

First-order Z-chains (or Z-chains described by one orientation), are just chains.
The first step in the composition of chains into second-order Z-chains is the
unyoking of the three orientations into three dimensions. Thus, when chains are
“chained together” to form higher-order chains, the principle of chaining like to
like is observed.

Chains (and Z-chains) can be compared with respect to several different
oriented features, including top pitch (more generally, top value), bottom pitch,
chain length, and interval span. Z-chains are found in one feature at a time.

Having specified a feature and a sequence of nth order Z-chains in one (recur-
sive) orientation, the same simple one-pass algorithm that finds chains is used

8 The Z stands for the zig-zagging shapes that result.

374

Music Listening as Information Processing 5

to find Z-chains of the (n+ 1)th order. For example, given a sequence of chains
going UP and comparing their top pitches, the chaining algorithm decomposes
the sequence into Z-chains (in feature top pitch) with orientations UP-UP, UP-
DOWN, and UP-SAME. The recursive Z-chain algorithm unyokes these new
dimensions, and runs the chaining algorithm again on each.

Each pass of the chaining algorithm is shorter than the last, since at every
subsequent level there fewer chains. The algorithm terminates when it finds only
one chain of a given recursive orientation, since there remains nothing to chain
it to. The algorithm for finding all Z-chains in a sequence (for a given feature)
is efficient, taking time O(n2) where n is the number of items in the sequence.

Fig. 1. Z-chains in “Happy Birthday.” On the left, top pitches UP-UP-UP and bottom
pitches UP-SAME; on the right, tops DOWN-DOWN-UP and bottoms DOWN-UP.

Fig. 2. A large scale fourth-order Z-chain in the first part of Presto from J. S. Bach,
solo violin Sonata I. The outer box encapsulates the repetition.

Figures 1 and 2 illustrate the Z-chain concept over small and large scales,
respectively.

Higher-order Z-chains may skip items in the sequence – in particular they
skip Z-chains in orientations other than their own. This property allows us to
infer that the orientation in question does not exist in a skipped stretch of music.
For a long piece of music, very high-order Z-chains may provide an overview of
some aspects of form, but they may also be fragmentary. Z-chains of second
and third orders, on the other hand, tend to provide compact synopses of short
stretches of music.

Z-chains are based on the concept of chaining like to like. A common motiva-
tion in computational music analysis is to search for repetition. This is often done
by comparing over note n-grams, possibly with a tolerance for error to admit
variation. The Z-chain scheme of chaining like to like, on the other hand, is an

375

6 Eliot Handelman and Andie Sigler

efficient search for parallelism, allowing similar structures (for a strictly-defined
definition of “similar”, not an error tolerance) to be linked. The link is itself
oriented, so that instead of saying of a structure “here it is, and here it is again”
(as in the search for repetition), a higher-level structure is constructed in which
the component lower-level structures stand in a specified oriented relation to one
another.

2.2 Synchronizing Z-chains

A synchronization function is a means of combining structures in different (or-
thogonal) dimensions. Mini-schemas are made from inclusions (overlaps) of Z-
chains in different orientable features (i.e. top pitch, bottom pitch, chain length,
etc.). Mini-schemas are specified by Z-chains in at least two different features,
and instantiated (as Z-chains are) as lists of chains.

Mini-schemas are constrained to consist of an entire Z-chain of some order
in (at least) one feature, and to consist of consecutive first-order chains. Given
a feature-set minimally including “top pitch” and “bottom pitch,” the union of
all mini-schemas always covers the entire sequence, since every two consecutive
pitch chains have oriented top pitches and bottom pitches.

A mini-schema specification may be instantiated more than once in a given
piece. The multiple instances of a schema need not be note-for-note identical,
they are only “the same” with respect to their multi-feature Z description (and
their compactness with regards to chains). They need not be the same in all
features, but only in the subset of features which is used in their description.
They need not contain the same number of first-order chains.

If there is more than one instance of a given mini-schema, it is possible to
compare instances to discover how the schema is deployed throughout the course
of the piece.

Mini-schemas are illustrated in Figure 3.

3 Pattern

A fact of music is that difference is valued: composers are obliged to produce
music that does not repeat any known music. It is also true that within a single
piece, differentiation is important, since it is difference that articulates form (at
all scales) and through which discourses occur.

In contrast with oriented shape, in which any two terms are comparable
within a total ordering, a comparison of pattern terms tells us only whether
they are equal or unequal. In a pattern like ABA, nothing is known about the
relationship between A and B, except that they are different, while A and A are
the same.

An obvious mode of pattern analysis is the detection of recurrent subse-
quences, for which well-known methods apply. A second mode involves the recog-
nition of “concentric” patterns, in which the ABA pattern is generalized by con-
sidering B as an island in a sea of A. Similarly, the following pattern has an
island of C : (ABBA(CC)ABABAA).

376

Music Listening as Information Processing 7

Fig. 3. Schemas in J. S. Bach: Gigue, Solo violin Partita II. Top half is view of chains
UP, bottom half is chains DOWN. The schemas outlined in lilac in the top half are
defined by constant pitch top, rising pitch bottom. The orange schemas in the lower
view are “hotter”, comprised of the additional feature of constant chain length, shown
with green arcs.

The concentric-pattern algorithm has, as a natural consequence, the effect
of segmenting stand-alone sections such as (ABCABCABCABC)(DEFDEF), in
which no terms in any top level group occur in any other top level group.

It is possible to generate patterns from schemas by comparing instances of
a schema specification under an equality predicate (e.g. exact equality, equality
under transposition, etc.). Among these are sure to be some easily identified as
“canonical,” fully interpretable as structures of repetition within concentricities.
The segmentation of a Bach work composed of two repeating sections proves to
be a trivial consequence of this analysis.

4 Motion

Motion naturally leads us to inquire into rhythm, but here we restrict ourselves
to the motion of schemas. Schemas allow for the construction of “motion shapes”
in the following way. Schemas are partial descriptions: nothing precludes a de-
scription involving three features partially covering a description with just two
features of the three. We may presume that the schema with more synchronized
features is more regular than one with fewer: in McLuhan’s (jazz-influenced) ter-
minology, the more regular schema is the “hotter” pattern, where a “hot pattern”
is said to “drive” perception and a “cool” pattern is said to invite perceptual
completion. The partial covering of a “cool” pattern – involving few features –
by a “hotter” pattern – a superset of the cool pattern – can be thought of as a
heat transition. Figure 4 shows an example.

377

8 Eliot Handelman and Andie Sigler

Fig. 4. Gigue, near the opening. Differential heat in the same schema, comprising heat
transitions. Red is hottest, i.e most regular, followed by orange and lilac. The boxes
show the Z-chains synchronized by the schemas.

5 Reasoning About Music

One benefit of the foregoing system lies in its ability to bring out formal structure
in arbitrarily simple or complex music, constructing divisions based on pattern-
recurrence of schemas. A further goal is a much more extensive elaboration
showing the interrelation of the parts of music.

The aim, in the material presented, was the generation of a “primary” (and
deterministic) level of musical objects. More objects are constructed by discov-
ering further relations, generating more shapes and patterns, at which point the
system is fully re-entrant. For example, each instance of a schema yields a pat-
tern of length in its base chains: the pattern can be treated as a Z-chain, whose
synchronicity with any other features can be schematized. From this point on,
analysis may proceed non-deterministically, since object generation is potentially
unlimited, and the possibilities of synchronization are vast.

References

1. Marr, D.: Vision: A computational investigation into the human representation and
processing of visual information. W. H. Freeman, San Francisco (1982)

2. Cohen, H.: The further exploits of Aaron, painter. Stanford Humanities Review, 4.2
(1995)

3. Simon, H.A., Sumner, R.K.: Patterns in music. In: B. Kleinmuntz (Ed.) Formal
representation of human judgement. Wiley, New York (1968)

4. Leeuwenberg, E.L.J.: A perceptual coding language for visual and auditory patterns.
American Journal of Psychology, 84, 307-349 (1971)

5. van der Helm, P.A.: Cognitive architecture of perceptual organization: From neurons
to gnosons. Cognitive Processing, 13, 13-40 (2012)

6. Dastani, M., Marchiori, E., Voorn, R.: Finding Perceived Pattern Structures us-
ing Genetic Programming. In: Genetic and Evolutionary Computation Conference
(2001)

378

