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Abstract. We introduce a two-alternative forced-choice experimental
paradigm to quantify expressed emotions in music using the two well-
known arousal and valence (AV) dimensions. In order to produce AV
scores from the pairwise comparisons and to visualize the locations of
excerpts in the AV space, we introduce a flexible Gaussian process (GP)
framework which learns from the pairwise comparisons directly. A novel
dataset is used to evaluate the proposed framework and learning curves
show that the proposed framework needs relative few comparisons in
order to achieve satisfactory performance. This is further supported by
visualizing the learned locations of excerpts in the AV space. Finally,
by examining the predictive performance of the user-specific models we
show the importance of modeling subjects individually due to significant
subjective differences.
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1 Introduction

In recent years Music Emotion Recognition has gathered increasing attention
within the Music Information Retrieval (MIR) community and is motivated by
the possibility to recommend music that expresses a certain mood or emotion.

The design approach to automatically predict the expressed emotion in mu-
sic has been to describe music by structural information such as audio features
and/or lyrical features. Different models of emotion, e.g., categorical [1] or di-
mensional [2], have been chosen and depending on these, various approaches
have been taken to gather emotional ground truth data [3]. When using dimen-
sional models such as the well established arousal and valence (AV) model [2]
the majority of approaches has been to use different variations of self-report
direct scaling listening experiments [4].
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Direct-scaling methods are fast ways of obtaining a large amount of data.
However, the inherent subjective nature of both induced and expressed emotion,
often makes anchors difficult to define and the use of them inappropriate due
to risks of unexpected communication biases. These biases occur because users
become uncertain about the meaning of scales, anchors or labels [5]. On the
other hand, lack of anchors and reference points makes direct-scaling experiments
susceptible to drift and inconsistent ratings. These effects are almost impossible
to get rid of, but are rarely modeled directly. Instead, the issue is typically
addressed through outlier removal or simply by averaging across users [6], thus
neglecting individual user interpretation and user behavior in the assessment of
expressed emotion in music.

Pairwise experiments eliminates the need for an absolute reference anchor,
due to the embedded relative nature of pairwise comparisons which persists the
relation to previous comparisons. However, pairwise experiments scale badly
with the number of musical excerpts which they accommodate in [7] by a tour-
nament based approach that limits the number of comparisons and transforms
the pairwise judgments into possible rankings. Subsequently, they use the trans-
formed rankings to model emotions.

In this paper, we present a novel dataset obtained by conducting a controlled
pairwise experiment measuring expressed emotion in music on the dimensions of
valence and arousal. In contrast to previous work, we learn from pairwise com-
parisons, directly, in a principled probabilistic manner using a flexible Gaussian
process model which implies a latent but interpretable valence and arousal func-
tion. Using this latent function we visualize excerpts in a 2D valance and arousal
space which is directly available from the principled modeling framework. Fur-
thermore the framework accounts for inconsistent pairwise judgments by partic-
ipants and their individual differences when quantifying the expressed emotion
in music. We show that the framework needs relatively few comparisons in or-
der to predict comparisons satisfactory, which is shown using computed learning
curves. The learning curves show the misclassification error as a function of the
number of (randomly chosen) pairwise comparisons.

2 Experiment

A listening experiment was conducted to obtain pairwise comparisons of ex-
pressed emotion in music using a two-alternative forced-choice paradigm. 20
different 15 second excerpts were chosen from the USPOP20021 dataset. The
20 excerpts were chosen such that a linear regression model developed in previ-
ous work [8] maps exactly 5 excerpts into each quadrant of the two dimensional
AV space. A subjective evaluation was performed to verify that the emotional
expression throughout each excerpt was considered constant.

A sound booth provided neutral surroundings for the experiment and the
excerpts were played back using headphones to the 8 participants (2 female,

1 http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
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6 male). Written and verbal instructions were given prior to each session to
ensure that subjects understood the purpose of the experiment and were famil-
iar with the two emotional dimensions of valence and arousal. Each participant
compared all 190 possible unique combinations. For the arousal dimension, par-
ticipants were asked the question Which sound clip was the most excited, active,
awake?. For the valence dimension the question was Which sound clip was the
most positive, glad, happy?. The two dimensions were evaluated individually in
random order. The details of the experiment are available in [9].

3 Pairwise-Observation based Regression

We aim to construct a model for the dataset given the audio excerpts in the set
X = {xi|i = 1, ..., n} with n = 20 distinct excerpts, each described by an input
vector xi of audio features extracted from the excerpt. For each test subject the
dataset comprises of all m = 190 combinations of pairwise comparisons between
any two distinct excerpts, u and v, where xu ∈ X and xv ∈ X . Formally, we
denote the output set (for each subject) as Y = {(dk;uk, vk)|k = 1, ...,m}, where
dk ∈ {−1, 1} indicates which of the two excerpts that had the highest valence or
arousal. dk = −1 means that the uk’th excerpt is picked over the vk’th and visa
versa when dk = 1.

We model the pairwise choice, dk, between two distinct excerpts, u and v, as
a function of the difference between two functional values, f(xu) and f(xv). The
function f : X → R thereby defines an internal, but latent absolute reference of
either valence or arousal as a function of the excerpt represented by the audio
features.

Given a function, f(·), we can define the likelihood of observing the choice
dk directly as the conditional distribution.

p (dk|fk) = Φ

(
dk
f (xvk

)− f (xuk
)√

2

)
, (1)

where Φ(x) is the cumulative Gaussian (with zero mean and unity variance) and

fk = [f (xuk
) , f (xvk

)]
>

. This classical choice model can be dated back to Thur-
stone and his fundamental definition of The Law of Comparative Judgment [10].

We consider the likelihood in a Bayesian setting such that
p (f |Y,X ) = p (Y|f) p(f |X )/p (Y|X ) where we assume that the likelihood fac-
torizes, i.e., p (Y|f) =

∏m
k=1 p (dk|fk).

In this work we consider a specific prior, namely a Gaussian Process (GP),
first considered with the pairwise likelihood in [11]. A GP is typically defined as
”a collection of random variables, any finite number of which have a joint Gaus-
sian distribution” [12]. By f (x) ∼ GP (0, k(x,x′)) we denote that the function
f(x) is modeled by a zero-mean GP with covariance function k(x,x′). The fun-
damental consequence of this formulation is that the GP can be considered a
distribution over functions, defined as p (f |X ) = N (0,K) for any finite set of of
function values f = [f(x1), ..., f(xn)]>, where [K]i,j = k(xi,xj).
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Bayes relation leads directly to the posterior distribution over f , which is not
analytical tractable. Instead, we use the Laplace Approximation to approximate
the posterior with a multivariate Gaussian distribution1.

To predict the pairwise choice dt on an unseen comparison between excerpts r
and s, where xr,xs ∈ X , we first consider the predictive distribution of f(xr) and
f(xs). Given the GP, we can write the joint distribution between f ∼ p (f |Y,X )

and the test variables ft = [f (xr) , f (xs)]
T

as
[
f

ft

]
= N

([
0

0

]
,

[
K kt

kT
t Kt

])
, (2)

where kt is a matrix with elements [kt]i,2 = k(xi,xs) and [kt]i,1 = k(xi,xr) with
xi being a training input.

The conditional p (ft|f) is directly available from Eq. (2) as a Gaussian
too. The predictive distribution is given as p (ft|Y,X ) =

∫
p (ft|f) p (f |Y,X ) df ,

and with the posterior approximated with the Gaussian from the Laplace ap-
proximation then p (ft|Y,X ) will also be Gaussian given by N (ft|µ∗,K∗) with
µ∗ = kT

t K
−1f̂ and K∗ = Kt − kT

t (I + WK)kt, where f̂ and W are obtained
from the Laplace approximation (see [13]). In this paper we are only interested
in the binary choice dt, which is determined by which of f(xr) or f(xs) that
dominates2.

The zero-mean GP is fully defined by the covariance function, k(x,x′). In the
emotion dataset each input instance is an excerpt described by the vector x con-
taining the audio features for each time frame which is naturally modeled with
a probability density, p(x). We apply the probability product (PP) kernel [14] in
order to support these types of distributional inputs. The PP kernel is defined
directly as an inner product as k (x,x′) =

∫
[p (x) p (x′)]qdx. We fix q = 1/2,

leading to the Hellinger divergence [14]. In order to model the audio feature
distribution for each excerpt, we resort to a (finite) Gaussian Mixture Model

(GMM). Hence, p(x) is given by p (x) =
∑Nz

z=1 p (z) p (x|z), where p (x|z) =
N (x|µz, σz) is a standard Gaussian distribution. The kernel is expressed in
closed form [14] as k (p (x) , p (x′)) =

∑
z

∑
z′ (p (z) p (z′))qk̃ (p (x|θz) , p (x′|θz′))

where k̃ (p (x|θz) , p (x′|θz′)) is the probability product kernel between two single
components - also available in closed form [14].

4 Modeling Expressed Emotion

In this section we evaluate the ability of the proposed framework to capture
the underlying structure of expressed emotions based on pairwise comparisons,
directly. We apply the GP model using the probability product (PP) kernel de-
scribed in Section 3 with the inputs based on a set of audio features extracted

1 More details can be found in e.g. [13].
2 With the pairwise GP model the predictive distribution of dt can also be computed

analytically (see [13]) and used to express the uncertainty in the prediction relevant
for e.g. sequential designs, reject regions etc.
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(a) Valence
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(b) Arousal

Fig. 1. Classification error learning curves and Kendall’s τ for 10-fold CV on com-
parisons. Bold lines are mean curves across subjects and dash lines are curves for
individual subjects. Notice, that for the classification error learning curves, the base-
line performance corresponds to an error of 0.5, obtained by simply randomly guessing
the pairwise outcome.

from the 20 excerpts. By investigating various combinations of features we ob-
tained the best performance using two sets of commonly used audio features. The
first set is the Mel-frequency cepstral coefficients (MFCC), which describe the
short-term power spectrum of the signal. Secondly, we included spectral contrast
features and features describing the spectrum of the Hanning windowed audio.
Based on an initial evaluation, we fix the number of components in the GMM
used in the PP Kernel to Nz = 3 components and train the individual GMMs by
a standard EM algorithm with K-means initialization. Alternatively, measures
such as the Bayesian Information Criterion (BIC) could be used to objectively
set the model complexity for each excerpt.

4.1 Results: Learning Curves

Learning curves for the individual subjects are computed using 10-fold cross
validation (CV) in which a fraction (90%) of the total number of pairwise com-
parisons constitutes the complete training set. Each point on the learning curve
is an average over 10 randomly chosen and equally-sized subsets from the com-
plete training set. The Kendall’s τ rank correlation coefficient is computed in
order to relate our results to that of e.g. [7] and other typical ranking based
applications. The Kendall’s τ is a measure of correlation between rankings and
is defined as τ = (Ns − Nd)/Nt where Ns is the number of correctly ranked
pairs, Nd is the number of incorrectly ranked pairs and Nt is the total number
of pairs. The reported Kendall’s τ is in all cases calculated with respect to the
predicted ranks using all the excerpts.

Figure 1 displays the computed learning curves. With the entire training set
included the mean classification errors across subjects for valence and arousal are
0.13 and 0.14, respectively. On average this corresponds to a misclassified com-
parison in every 7.5 and 7’th comparison for valence and arousal, respectively.
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For valence, the mean classification error across users is below 0.2 with 40% of
the training data included, whereas only 30% of the training data is needed to
obtain similar performance for arousal. This indicates that the model for arousal
can be learned slightly faster than valence. Using 30% of the training data the
Kendall’s τ is 0.94 and 0.97, respectively, indicating a good ranking performance
using only a fraction of the training data.

When considering the learning curves for individual users we notice signifi-
cant individual differences between users—especially for arousal. Using the entire
training set in the arousal experiment, the user for which the model performs
best results in an error of 0.08 whereas the worst results in an error of 0.25. In
the valence experiment the best and worst performances result in classification
errors of 0.08 and 0.2, respectively.

4.2 Results: AV space

The learning curves show the pure predictive power of the model on unseen
comparisons, but may be difficult to interpret in terms of the typical AV space.
To address this we show that the latent regression function f(·) provides an
internal but unit free representation of the AV scores. The only step required is
a normalization which ensures that the latent values are comparable across folds
and subjects. In Figure 2 the predicted AV scores are shown when the entire
training set is included and when only 30% is included. The latter corresponds
to 51 comparisons in total or an average of 2.5 comparisons per excerpt. The
results are summarized by averaging across the predicted values for each user.
15 of the 20 excerpts are positioned in the typical high-valence high-arousal and
low-valence low-arousal quadrants, 2 excerpts are clearly in the low-valance high-
arousal quadrant and 3 excerpts are in the high-valance low-arousal quadrant of
the AV space. The minor difference in predictive performance between 30% and
the entire training dataset does not lead to any significant change in AV scores,
which is in line with the reported Kendall’s τ measure.

4.3 Discussion

The results clearly indicate that it is possible to model expressed emotions in
music by directly modeling pairwise comparisons in the proposed Gaussian pro-
cess framework using subject specific models. An interesting point is the large
difference in predictive performance between subjects given the specific mod-
els. These differences can be attributed to the specific model choice (including
kernel) or simply to subject inconsistency in the pairwise decisions. The less im-
pressive predictive performance for certain subjects is presumably a combination
of the two effects, although given the very flexible nature of the Gaussian process
model, we mainly attribute the effect to subjects being inconsistent due to for
example mental drift. Hence, individual user behavior, consistency and discrim-
inative ability are important aspects of modeling expressed emotion in music
and other cognitive experiments, and thus also a critical part when aggregating
subjects in large datasets.
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No. Song name

1 311 - T and p combo
2 A-Ha - Living a boys

adventure
3 Abba - Thats me
4 Acdc - What do you do for

money honey
5 Aaliyah - The one i gave my

heart to
6 Aerosmith - Mother popcorn
7 Alanis Morissette - These r

the thoughts
8 Alice Cooper - Im your gun
9 Alice in Chains - Killer is me
10 Aretha Franklin - A change
11 Moby - Everloving
12 Rammstein - Feuer frei
13 Santana - Maria caracoles
14 Stevie Wonder - Another star
15 Tool - Hooker with a pen..
16 Toto - We made it
17 Tricky - Your name
18 U2 - Babyface
19 Ub40 - Version girl
20 Zz top - Hot blue and

righteous

Fig. 2. AV values computed by averaging the latent function across folds and repeti-
tions and normalizing for each individual model for each participant. Red circles: 30%
of training set is used. Black squares: entire training set is used.

The flexibility and interpolation abilities of Gaussian Processes allow the
number of comparisons to be significantly lower than the otherwise quadratic
scaling of unique comparisons. This aspect and the overall performance should
of course be examined further by considering a large scale dataset and the use
of several model variations. In addition, the learning rates can be improved
by combining the pairwise approach with active learning or sequential design
methods, which in turn select only pairwise comparisons that maximize some
information criterion.

We plan to investigate how to apply multi-task (MT) or transfer learning to
the special case of pairwise comparisons, such that we learn one unifying model
taking subjects differences into account instead of multiple independent subject-
specific models. A very appealing method is to include MT learning in the kernel
of the GP [15], but this might not be directly applicable in the pairwise case.

5 Conclusion

We introduced a two-alternative forced-choice experimental paradigm for quan-
tifying expressed emotions in music in the typical arousal and valance (AV)
dimensions. We proposed a flexible probabilistic Gaussian process framework to
model the latent AV scales directly from the pairwise comparisons. The frame-
work was evaluated on a novel dataset and resulted in promising error rates for
both arousal and valence using as little as 30% of the training set corresponding
to 2.5 comparisons per excerpt. We visualized AV scores in the well-known two
dimensional AV space by exploiting the latent function in the Gaussian process
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model, showing the application of the model in a standard scenario. Finally we
especially draw attention to the importance of maintaining individual models
for subjects due to the apparent inconsistency of certain subjects and general
subject differences.
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