
The Intervalgram: An Audio Feature for
Large-scale Melody Recognition

Thomas C. Walters, David A. Ross, and Richard F. Lyon

Google, 1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA
tomwalters@google.com

Abstract. We present a system for representing the melodic content of
short pieces of audio using a novel chroma-based representation known
as the ‘intervalgram’, which is a summary of the local pattern of musical
intervals in a segment of music. The intervalgram is based on a chroma
representation derived from the temporal profile of the stabilized audi-
tory image [10] and is made locally pitch invariant by means of a ‘soft’
pitch transposition to a local reference. Intervalgrams are generated for a
piece of music using multiple overlapping windows. These sets of interval-
grams are used as the basis of a system for detection of identical melodies
across a database of music. Using a dynamic-programming approach for
comparisons between a reference and the song database, performance is
evaluated on the ‘covers80’ dataset [4]. A first test of an intervalgram-
based system on this dataset yields a precision at top-1 of 53.8%, with
an ROC curve that shows very high precision up to moderate recall, sug-
gesting that the intervalgram is adept at identifying the easier-to-match
cover songs in the dataset with high robustness. The intervalgram is de-
signed to support locality-sensitive hashing, such that an index lookup
from each single intervalgram feature has a moderate probability of re-
trieving a match, with few false matches. With this indexing approach,
a large reference database can be quickly pruned before more detailed
matching, as in previous content-identification systems.

Keywords: Melody Recognition, Auditory Image Model, Machine Hear-
ing

1 Introduction

We are interested in solving the problem of cover song detection at very large
scale. In particular, given a piece of audio, we wish to identify another piece
of audio representing the same melody, from a potentially very large reference
set. Though our approach aims at the large-scale problem, the representation
developed is compared in this paper on a small-scale problem for which other
results are available.

There can be many differences between performances with identical melodies.
The performer may sing or play the melody at a different speed, in a different key
or on a different instrument. However, these changes in performance do not, in
general, prevent a human from identifying the same melody, or pattern of notes.

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012) 
19-22 June 2012, Queen Mary University of London 
All rights remain with the authors.

295



2 Thomas C. Walters, David A. Ross and Richard F. Lyon

Thus, given a performance of a piece of music, we wish to find a representation
that is to the largest extent possible invariant to such changes in instrumentation,
key, and tempo.

Serra [12] gives a thorough overview of the existing work in the field of melody
identification, and breaks down the problem of creating a system for identifying
versions of a musical composition into a number of discrete steps. To go from
audio signals for pieces of music to a similarity measure, the proposed process
is:

– Feature extraction
– Key invariance (invariance to transposition)
– Tempo invariance (invariance to a faster or slower performance)
– Structure invariance (invariance to changes in long-term structure of a piece

of music)
– Similarity computation

In this study, we concentrate on the first three of these steps: the extraction
of an audio feature for a signal, the problem of invariance to pitch shift of the
melody (both locally and globally) and the problem of invariance to changes in
tempo between performances of a piece of music. For the first stage, we present
a system for generating a pitch representation from an audio signal, using the
stabilized auditory image (SAI) [10] as an alternative to standard spectrogram-
based approaches. Key invariance is achieved locally (per feature), rather than
globally (per song). Individual intervalgrams are key normalized relative to a
reference chroma vector, but no guarantees are made that the reference chroma
vector will be identical across consecutive features. This local pitch invariance
allows for a feature that can track poor-quality performances in which, for ex-
ample, a singer changes key gradually over the course of a song. It also allows
the feature to be calculated in a streaming fashion, without having to wait to
process all the audio for a song before making a decision on transposition. Other
approaches to this problem have included shift-invariant transforms [9], the use
of all possible transpositions [5] or finding the best transposition as a function
of time in a symbolic system [13]. Finally, tempo invariance is achieved by the
use of variable-length time bins to summarize both local and longer-term struc-
ture. This approach is in contrast to other systems [5, 9] which use explicit beat
tracking to achieve tempo invariance.

While the features are designed for use in a large-scale retrieval system when
coupled with a hashing technique [1], in this study we test the baseline per-
formance of the features by using a Euclidean distance measure. A dynamic-
programming alignment is performed to find the smallest-cost path through the
map of distances between a probe song and a reference song; partial costs, av-
eraged over good paths of reasonable duration, are used to compute a similarity
score for a each probe-reference pair.

We evaluate performance of the intervalgam (using both SAI-based chroma
and spectrogram-based chroma) using the ‘covers80’ dataset [4]. This is a set
of 160 songs, in 80 pairs that share an underlying composition. There is no ex-
plicit notion of a ‘cover’ versus an ‘original’ in this set, just an ‘A’ version and

296



The Intervalgram: An Audio Feature for Large-scale Melody Recognition 3

a ‘B’ version of a given composition, randomly selected. While it is a small cor-
pus, several researchers have made use of this dataset for development of audio
features, and report results on it. Ellis [5] reports performance in terms of ab-
solute classification accuracy for the LabRosa 2006 and 2007 music information
retrieval evaluation exchange (MIREX) competition, and these results are ex-
tended by, amongst others, Ravuri and Ellis [11], who present detection error
tradeoff curves for a number of systems.

Since we are ultimately interested in the use of the intervalgram in a large-
scale system, it is worth briefly considering the requirements of such a system.
In order to perform completely automated detection of cover songs from a large
reference collection, it is necessary to tune a system to have extremely low false
hit rate on each reference. For such a system, we are interested less in high abso-
lute recall and more in finding the best possible recall given a very low threshold
for false positives. Such systems have previously been reported for nearly-exact-
match content identification [1]. The intervalgram has been developed for and
tested with a similar large-scale back end based on indexing, but there is no large
accessible data set on which performance can be reported. It is hard to estimate
recall on such undocumented data sets, but the system identifies a large number
of covers even when tuned for less than 1% false matches.

2 Algorithm

2.1 The Stabilized Auditory Image

The stabilized auditory image (SAI) is a correlogram-like representation of the
output of an auditory filterbank. In this implementation, a 64-channel pole-zero
filter cascade [8] is used. The output of the filterbank is half-wave rectified and
a process of ‘strobe detection’ is carried out. In this process, large peaks in the
waveform in each channel are identified. The original waveform is then cross-
correlated with a sparsified version of itself which is zero everywhere apart from
at the identified strobe points. This process of ‘strobed temporal integration’
[10, 14] is very similar to performing autocorrelation in each channel, but is
considerably cheaper to compute due to the sparsity of points in the strobe signal.
The upper panels of Figure 1 show a waveform (upper panel) and stabilized
auditory image (middle panel) for a sung note. The pitch of the voice is visible
as a series of vertical ridges at lags corresponding to multiples of the repetition
period of the waveform, and the formant structure is visible in the pattern of
horizontal resonances following each large pulse.

2.2 Chroma From the Auditory Image

To generate a chroma representation from the SAI, the ‘temporal profile’ is first
computed by summing over the frequency dimension; this gives a single vector
of values which correspond to the strength of temporally-repeating patterns in
the waveform at different lags. The temporal profile gives a representation of

297



4 Thomas C. Walters, David A. Ross and Richard F. Lyon

0 5 10

Time (ms)
F

ilt
e

r 
c
e

n
te

r 
fr

e
q

u
e

n
c
y
 (

H
z
) 9400

40

0 5 10

Lag (ms)

Fig. 1. Waveform (top panel), stabilized auditory image(SAI) (middle panel) and SAI
temporal profile (bottom panel) for a human voice singing a note.

the time intervals associated with strong temporal repetition rates, or possible
pitches, in the incoming waveform. This SAI temporal profile closely models
human pitch perception [6]; for example, in the case of stimuli with a missing
fundamental, there may be no energy in the spectrogram at the frequency of the
pitch perceived by a human, but the temporal profile will show a peak at the
time interval associated with the missing fundamental.

The lower panel of Figure 1 shows the temporal profile of the stabilized
auditory image for a sung vowel. The pitch is visible as a set of strong peaks
at lags corresponding to integer multiples of the pulse rate of the waveform.
Figure 2 shows a series of temporal profiles stacked in time, a ‘pitch-o-gram’, for
a piece of music with a strong singing voice in the foreground. The dark areas
correspond to lags associated with strong repetition rates in the signal, and the
evolving melody is visible as a sequence of horizontal stripes corresponding to
notes; for example in the first second of the clip there are four strong notes,
followed by a break of around 1 second during which there are some weaker note
onsets.

The temporal profile is then processed to map lag values to pitch chromas in
a set of discrete bins, to yield a representation as chroma vectors, also known as
‘pitch class profiles’ (PCPs) [12]. In our standard implementation, we use 32 pitch
bins per octave. Having more bins than the standard 12 semitones in the Western
scale allows the final feature to accurately track the pitch in recordings where

298



The Intervalgram: An Audio Feature for Large-scale Melody Recognition 5

L
a

g
 (

m
s
)

Time (s)

1 2 3 4 5

5

10

15

20

25

Fig. 2. A ‘pitch-o-gram’ created by stacking a number of SAI temporal profiles in time.
The lag dimension of the auditory image is now on the vertical axis. Dark ridges are
associated with strong repetition rates in the signal.

299



6 Thomas C. Walters, David A. Ross and Richard F. Lyon

the performer is either mistuned or changes key gradually over the course of
the performance; it also enables more accurate tracking of pitch sweeps, vibrato,
and other non-quantized changes in pitch. Additionally, using an integer power
of two for the dimensions of the final representation lends itself to easy use of
a wavelet decomposition for hashing, which is discussed below. The chroma bin
assignment is done using a weighting matrix, by which the temporal profile is
multiplied to map individual samples from the lag dimension of the temporal
profile into chroma bins. The weighting matrix is designed to map the linear
time-interval axis to a wrapped logarithmic note pitch axis, and to provide a
smooth transition between chroma bins. An example weighting matrix is shown
in Figure 3. The chroma vectors for the same piece of music as in Figure 2 are
shown in Figure 4.

L
a

g
 (

m
s
)

Chroma bin

4 8 12 16 20 24 28 32

5

10

15

20

25

Fig. 3. Weighting matrix to map from the time-lag axis of the SAI to chroma bins.

2.3 Chroma From the Spectrogram

In addition to the SAI-based chroma representation described above, a more
standard spectrogram-based chroma representation was tested as the basis for
the intervalgram. In this case, chroma vectors were generated using the chromagram E

function distributed with the covers80 [4] dataset, with a modified step size to
generate chroma vectors at the rate of 50 per second, and 32 pitch bins per

300



The Intervalgram: An Audio Feature for Large-scale Melody Recognition 7

Time (s)

C
h

ro
m

a
 b

in

1 2 3 4 5

4

8

12

16

20

24

28

32

Fig. 4. Chroma vectors generated from the pitch-o-gram vectors shown in Figure 2.

octave for compatibility with the SAI-based features above. This function uses
a Gaussian weighting function to map FFT bins to chroma, and weights the
entire spectrum with a Gaussian weighting function to emphasize octaves in the
middle of the range of musical pitches.

2.4 Intervalgram Generation

A stream of chroma vectors is generated at a rate of 50 per second. From this
chromagram, a stream of ‘intervalgrams’ is constructed at the rate of around
4 per second. The intervalgram is a matrix with dimensions of chroma and
time offset; however, depending on the exact design the time-offset axis may be
nonlinear.

For each time-offset bin in the intervalgram, a sequence of individual chroma
vectors are averaged together to summarize the chroma in some time window,
before or after a central reference time. It takes several contiguous notes to ef-
fectively discern the structure of a melody, and for any given melody the stream
of notes may be played a range of speeds. In order to take into account both
short- and longer-term structure in the melody, a variable-length time-averaging
process is used to provide a fine-grained view of the local melody structure, and
simultaneously give a coarser view of longer timescales, to accommodate a mod-
erate amount of tempo variation; that is, small absolute time offsets use narrow
time bin widths, while larger absolute offsets use larger bin widths. Figure 5
shows how chroma vectors are averaged together to make the intervalgram. In
the examples below, the widths of the bins increase from the center of the inter-
valgram, and are proportional to the sum of a forward and reverse exponential

wb = f
(
wp

f + w−p
f

)
, where p is an integer between 0 and 15 (for the positive

bins) and between 0 and -15 (for the negative bins), f is the central bin width,
and wf is the width factor which determines the speed with which the bin width
increases as a function of distance from the center of the intervalgram.

In the best-performing implementation, the temporal axis of the intervalgram
is 32 bins wide and spans a total time window of around 30 seconds. The central

301



8 Thomas C. Walters, David A. Ross and Richard F. Lyon

two slices along the time axis of the intervalgram are the average of 18 chroma
vectors each (360ms each), moving away from the centre of the intervalgram, the
outer temporal bins summarize longer time-scales before and after the central
time. The number of chroma vectors averaged in each bin increases up to 99
(1.98s) in the outermost bins leading to a total temporal span of 26 seconds for
each intervalgram.

Fig. 5. The intervalgram is generated from the chromagram using variable-width time
bins and cross-correlation with a reference chroma vector to normalize chroma within
the individual intervalgram.

A ‘reference’ chroma vector is also generated from the stream of incoming
chroma vectors at the same rate as the intervalgrams. The reference chroma
vector is computed by averaging together nine adjacent chroma vectors using a
triangular window. The temporal center of the reference chroma vector corre-
sponds to the temporal center of the intervalgram. In order to achieve local pitch
invariance, this reference vector is then circularly cross-correlated with each of
the surrounding intervalgram bins. This cross-correlation process implements a
‘soft’ normalization of the surrounding chroma vectors to a prominent pitch or
pitches in the reference chroma vector. Given a single pitch peak in the refer-

302



The Intervalgram: An Audio Feature for Large-scale Melody Recognition 9

ence chroma vector, the process corresponds exactly to a simple transposition
of all chroma vectors to be relative to the single pitch peak. In the case where
there are multiple strong peaks in the reference chroma vector, the process cor-
responds to a simultaneous shifting to multiple reference pitches, followed by a
weighted average based on the individual pitch strengths. This process leads to
a blurry and more ambiguous interval representation but, crucially, never leads
to a hard decision being made about the ‘correct’ pitch of the melody at any
point. Making only ‘soft’ decisions at each stage means that there is less need
for either heuristics or tuning of parameters in building the system. With stan-
dard parameters the intervalgram is a 32 by 32 pixel feature vector generated
at the rate of one every 240ms and spanning a 26 second window. Since there
are many overlapping intervalgrams generated, there are many different pitch
reference slices used, some making crisp intervalgrams, and some making fuzzy
intervalgrams.

2.5 Similarity Scoring

Dynamic programming is a standard approach for aligning two audio representa-
tions, and has been used for version identification by many authors (for example
[16]; Serra [12] provides a representative list of example implementations). To
compare sets of features from two recordings, each feature vector from the probe
recording is compared to each feature vector from the reference recording, using
some distance measure, for example Euclidean distance, correlation, or Hamming
distance over a locality-sensitive hash of the feature. This comparison yields a
distance matrix with samples from the probe on one axis and samples from the
reference on the other. We then find a minimum-cost path through this matrix
using a dynamic programming algorithm that is configured to allow jumping
over poorly-matching pairs. Starting at the corner corresponding to the begin-
ning of the two recordings the path can continue by jumping forward a certain
number of pixels in both the horizontal and vertical dimensions. The total cost
for any particular jump is a function of the similarity of the two samples to be
jumped to, the cost of the jump direction and the cost of the jump distance. If
two versions are exactly time-aligned, we would expect that the minimum-cost
path through the distance matrix would be a straight line along the leading di-
agonal. Since we expect the probe and reference to be roughly aligned, the cost
of a diagonal jump is set to be smaller than the cost of an off-diagonal jump.

The minimum and maximum allowed jump lengths in samples can be selected
to allow the algorithm to find similar intervalgrams that are more sparsely dis-
tributed, interleaved with poorly matching ones, and to constrain the maximum
and minimum deviation from the leading diagonal. Values that work well are a
minimum jump of 3 and maximum of 4, with a cost factor equal to the longer
of the jump dimensions (so a move of 3 steps in the reference and 4 in the probe
costs as much as 4,4 even though it uses up less reference time, while jumps of
3,3 and 4,4 along the diagonal can be freely intermixed without affecting the
score as long as enough good matching pairs are found to jump between). These
lengths, along with the cost penalty for an off-diagonal jump and the difference

303



10 Thomas C. Walters, David A. Ross and Richard F. Lyon

in cost for long jumps over short jumps, are parameters of the algorithm. Figure
6 shows a distance matrix for a probe and reference pair.

Fig. 6. Example distance matrix for a pair of songs which share an underlying melody.
The lighter pixels show the regions where the intervalgrams match closely.

In the following section we test the performance of the raw intervalgrams,
combined with the dynamic programming approach described above, in finding
similarity between cover songs.

3 Experiments

We tested performance of the similarity-scoring system based on the interval-
gram, as described above, using the standard paradigm for the covers80 dataset,
which is to compute a distance matrix for all query songs against all reference
songs, and report the percentage of query songs for which the correct reference
song has the highest similarity score.

Intervalgrams were computed from the SAI using the parameters outlined in
Table 1, and scoring of probe-reference pairs was performed using the dynamic
programming approach described above. Figure 7 shows the matrix of scores
for the comparison of each probe with all reference tracks. Darker pixels denote

304



The Intervalgram: An Audio Feature for Large-scale Melody Recognition 11

lower score, and lighter pixels denote higher scores. The white crosses show
the highest-scoring reference for a given probe. 43 of the 80 probe tracks in
the covers80 dataset were correctly matched to their associated reference track
leading to a score of 53.8% on the dataset. For comparison, Ellis [5] reports a
score of 42.5% for his MIREX2006 entry, and 67.5% for his MIREX2007 entry
(the latter had the advantage of using covers80 as a development set, so is less
directly comparable).

Parameter Value
Chromagram step size (ms) 20
Chroma bins per octave 32
Total intervalgram width (s) 26.04
Intervalgram step size (ms) 240
Reference chroma vector width (chroma vectors) 4

Fig. 7. Scores matrix for comparing all probes and references in the ‘covers80’ dataset.
Lighter pixels denote higher scores, indicating a more likely match. White crosses
denote the best-matching reference for each probe.

In addition to the SAI-based chroma features, standard spectrogram-based
chroma features were computed from all tracks in the ‘covers80’ dataset. These
features used 32 chroma bins, and were computed at 50 frames per second, to

305



12 Thomas C. Walters, David A. Ross and Richard F. Lyon

provide a drop-in replacement for the SAI-based features. Intervalgrams were
computed from these features using the parameters in Table 1.

In order to generate detection error tradeoff curves for the dataset, the scores
matrix from Figure 7 was dynamically thresholded to determine the number of
true and false positives for a given threshold level. The results were compared
against the reference system supplied with the covers80 dataset, which is essen-
tially the same as the system entered by LabRosa for the 2006 MIREX competi-
tion, as documented by Ellis [5]. Figure 8 shows ROC curves the Elllis MIREX’06
entry and for the intervalgram-based system, both with SAI chroma features
and spectrogram chroma features. Re-plotting the ROC curve as a DET curve
to compare results with Ravuri and Ellis [11], performance of the intervalgram-
based features is seen to consistently lie between that of the LabRosa MIREX
2006 entry and their 2007 entry.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

 

 

Ellis MIREX ’06

Intervalgram (SAI chroma)

Intervalgram (spectrogram chroma)

Fig. 8. ROC curves for the intervalgram-based system described in this paper and the
LabROSA MIREX 2006 entry [5].

Of particular interest is the performance of the features at high precision.
The SAI-based intervalgram can achieve 47.5% recall at 99% precision, whereas
the Ellis MIREX ‘06 system achieves 35% recall at 99% precision. These early
results suggest that the intervalgram shows good robustness to interference. The
intervalgram also stands up well to testing on larger, internal, datasets in com-
bination with hashing techniques, as discussed below.

306



The Intervalgram: An Audio Feature for Large-scale Melody Recognition 13

4 Discussion

We have introduced a new chroma-based feature for summarizing musical melodies,
which does not require either beat tracking or exhaustive search for transposition
invariance, and have demonstrated a good baseline performance on a standard
dataset. However, we developed the intervalgram representation to be a suitable
candidate for large-scale, highly robust cover-song detection. In the following
sections we discuss some approaches to the application of the intervalgram in
such a system.

4.1 SAI and Spectrogram-based Chroma

There was no great difference in performance between intervalgrams gener-
ated using the temporal profile of the SAI and intervalgrams generated using
a spectrogram-based chroma feature. However, there are some small differences
in different regions of the ROC curve. Recall at high precision is very similar
for both forms of chroma features; as precision is allowed to fall, the SAI-based
features lead to slightly higher recall for a given precision, but the trend is re-
versed in the lower-precision end of the curve. This may suggest that there would
be a benefit in combining both SAI-based and spectrogram-based chroma into a
feature which makes use of both. There is some evidence to suggest that the tem-
poral profile of the SAI may be robust to stimuli in which the pitch is ambiguous
[6], but this result may be less relevant in the context of music.

4.2 Scaling Up

In order to perform melody recognition on a large database of content, it is
necessary to find a cheaper and more efficient way of matching a probe song
against many references. The brute-force approach of computing a full distance
map for the probe against every possible reference scales as the product of the
number of probes and the number of references; thus a system which makes
it cheap to find a set of matching segments in all references for a given probe
would be of great value. Bertin-Mahieux and Ellis [2] presented a system us-
ing hashed chroma landmarks as keys for a linear-time database lookup. Their
system showed promise, and demonstrated a possible approach to large-scale
cover-song detection but the reported performance numbers would not make
for a practically-viable system. While landmark or ‘interest point’ detection has
been extremely successful in the context of exact audio matching in noise [15]
its effectiveness in such applications is largely due to the absolute invariance in
the location of strong peaks in the spectrogram. For cover version identification
the variability in performances, both in timing and in pitch, means that de-
scriptors summarizing small constellations of interest points will necessarily be
less discriminative than descriptors summarizing more complete features over a
long time span. With this in mind, we now explore some options for generating
compact hashes of full intervalgrams for indexing and retrieval purposes.

307



14 Thomas C. Walters, David A. Ross and Richard F. Lyon

Hashing of the Intervalgram Using the process outlined above, 32×32 pixel
intervalgrams are generated from a signal at the rate of one per 240ms. To
effectively find alternative performances of a melody in a large-scale database, it
must be possible to do efficient lookup to find sequences of potentially potential
matching intervalgrams. The use of locality-sensitive-hashing (LSH) techniques
over long-timescale features for music information retrieval has previously been
investigated and found to be useul for large datasets [3]. Various techniques
based on locality-sensitive hashing (LSH) may be employed to generate a set of
compact hashes which summarize the intervalgram, and which can be used as
keys to look up likely matches in a key-value lookup system.

An effective technique for summarizing small images with a combination of
wavelet analysis and Min-Hash was presented by Baluja and Covell [1] in the
context of hashing spectrograms for exact audio matching. A similar system of
wavelet decomposition was previously applied to image analysis [7]. The system
described in [1] has been adapted to produce a compact locality-sensitive hash
of the intervalgram. The 32×32 intervalgram is decomposed into a set of wavelet
coefficients using a Haar kernel, and the top t wavelet coefficients with the highest
magnitude values retained. If the value t is chosen to be much smaller than
the total number of pixels in the image, the most prominent structure of the
intervalgram will be maintained, with a loss of some detail.

Compared to exact-match audio identification, this system is much more
challenging, since the individual hash codes are noisier and less discriminative.
The indexing stage necessarily has many false hits when it is tuned to get any
reasonable recall, so there are still many (at least thousands out of a reference
set of millions) of potential matches to score in detail before deciding whether
there is a match.

5 Conclusions

The intervalgram is a pitch-shift-independent feature for melody-recognition
tasks. Like other features for melody recognition, it is based on chroma fea-
tures, but in our work the chroma representation is derived from the temporal
profile of a stabilized auditory image, rather than from a spectrogram. To achieve
pitch-shift invariance, individual intervalgrams are shifted relative to a reference
chroma vector, but no global shift invariance is used. Finally, to achieve some
degree of tempo-invariance, variable-width time-offset bins are used to capture
both local and longer-term features.

In this study, the performance of the intervalgram was tested by using dynamic-
programming techniques to find the cheapest path through similarity matrices
comparing a cover song to all references in the ‘covers80’ dataset. Intervalgrams,
followed by dynamic-programming alignment and scoring, gave a precision at
top-1 of 53.8%. This performance value, and the associated ROC curve, lies be-
tween the performance of the Ellis 2006 and Ellis 2007 MIREX entries (the latter
of which was developed using the covers80 dataset).

308



The Intervalgram: An Audio Feature for Large-scale Melody Recognition 15

The intervalgram has shown itself to be a promising feature for melody recog-
nition. It has good performance characteristics for high-precision matching with
a low false-positive rate. Furthermore the algorithm is fairly simple and fully
‘feed-forward’, with no need for beat tracking or computation of global statistics.
This means that it can be run in a streaming fashion, requiring only buffering
of enough data to produce the first intervalgram before a stream of interval-
grams can be generated. This feature could make it suitable for applications like
query-by-example in which absolute latency is an important factor.

We believe that the intervalgram representation would also lend itself well to
large scale application when coupled with locality-sensitive hashing techniques
such as wavelet-decomposition followed by minhash. The high precision would
allow for querying of a large database with a low false-positive rate, and indeed
preliminary experiments show some promise in this area. We look forward to
tuning the performance of the intervalgram representation on larger research
datasets.

References

1. S. Baluja and M. Covell. Waveprint: Efficient wavelet-based audio fingerprinting.
Pattern recognition, 41(11):3467–3480, 2008.

2. T. Bertin-Mahieux and D. Ellis. Large-scale cover song recognition using hashed
chroma landmarks. In Proceedings of the International Symposium on Music In-
formation Retrieval (ISMIR), 2011.

3. M. Casey, C. Rhodes, and M. Slaney. Analysis of minimum distances in high-
dimensional musical spaces. IEEE Transactions on Audio, Speech, and Language
Processing, 16(5):1015–1028, 2008.

4. D. Ellis, The ‘covers80’ cover song data set.
http://labrosa.ee.columbia.edu/projects/coversongs/covers80/.

5. D. Ellis and C. Cotton. The 2007 LabROSA cover song detection system. MIREX
2007 Audio Cover Song Evaluation system description, 2007.

6. D. Ives and R. Patterson. Pitch strength decreases as f0 and harmonic resolution
increase in complex tones composed exclusively of high harmonics. The Journal of
the Acoustical Society of America, 123:2670, 2008.

7. C. Jacobs, A. Finkelstein, and D. Salesin. Fast multiresolution image querying. In
Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, pages 277–286. ACM, 1995.

8. R. Lyon. Cascades of two-pole-two-zero asymmetric resonators are good models
of peripheral auditory function. Journal of the Acoustical Society of America,
130(6):3893, 2011.

9. M. Marolt. A mid-level representation for melody-based retrieval in audio collec-
tions. Multimedia, IEEE Transactions on, 10(8):1617–1625, 2008.

10. R. Patterson, K. Robinson, J. Holdsworth, D. McKeown, C. Zhang, and M. Aller-
hand. Complex sounds and auditory images. In Auditory physiology and percep-
tion, Proceedings of the 9th International Symposium on Hearing, pages 429–446.
Pergamon, 1992.

11. S. Ravuri and D. Ellis. Cover song detection: from high scores to general classifi-
cation. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE Interna-
tional Conference on, pages 65–68. IEEE, 2010.

309



16 Thomas C. Walters, David A. Ross and Richard F. Lyon

12. J. Serra Julia. Identification of versions of the same musical composition by pro-
cessing audio descriptions. PhD thesis, Universitat Pompeu Fabra, 2011.

13. W. Tsai, H. Yu, and H. Wang. Using the similarity of main melodies to identify
cover versions of popular songs for music document retrieval. Journal of Informa-
tion Science and Engineering, 24(6):1669–1687, 2008.

14. T. Walters. Auditory-based processing of communication sounds. PhD thesis, Uni-
versity of Cambridge, 2011.

15. A. Wang. An industrial strength audio search algorithm. In Proceedings of the In-
ternational Symposium on Music Information Retrieval (ISMIR), volume 2, 2003.

16. C. Yang. Music database retrieval based on spectral similarity. In Proceedings of
the International Symposium on Music Information Retrieval (ISMIR), 2001.

310




