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Abstract. It is natural for people to organize music in terms of its emo-
tional associations, but while this task is a natural process for humans,
quantifying it empirically proves to be a very difficult task. Consequently,
no particular acoustic feature has emerged as the optimal representation
for musical emotion recognition. Due to the subjective nature of emotion,
determining how informative an acoustic feature domain is requires eval-
uation by human subjects. In this work, we seek to perceptually evaluate
two of the most commonly used features in music information retrieval:
mel-frequency cepstral coefficients and the chromagram. Furthermore, to
identify emotion-informative feature domains, we seek to identify what
musical features are most variant or invariant to changes in musical qual-
ities. This information could also potentially be used to inform methods
that seek to learn acoustic representations that are specifically optimized
for prediction of emotion.

Keywords: emotion, music emotion recognition, features, acoustic fea-
tures, machine learning, invariance

1 Introduction

The problem of automated recognition of emotional (or mood) content within
music has been the subject of increasing attention among the music informa-
tion retrieval (Music-IR) research community [1]. While there has been much
progress in machine learning systems for estimating human emotional response
to music, very little progress has been made in terms of compact or intuitive
feature representations. Current methods generally focus on combining several
feature domains (e.g. loudness, timbre, harmony, rhythm), in some cases as many
as possible, and performing dimensionality reduction techniques such as prin-
cipal component analysis (PCA). Overall, these methods have not sufficiently
improved performance, and have done little to advance the field.

In this work, we begin by perceptually evaluating two of the most commonly
used features in Music-IR: mel-frequency cepstral coefficients (MFCCs) and the
chromagram. MFCCs have been shown in previous work to be one of the most
informative feature domains for music emotion recognition [2–5], but as MFCCs

9th International Symposium on Computer Music Modelling and Retrieval (CMMR 2012) 
19-22 June 2012, Queen Mary University of London 
All rights remain with the authors.

534



2 Schmidt et al.

were originally designed for speech recognition, it is unclear why they perform so
well or how much information about emotion they actually contain. Conversely,
the chromagram appears to be one of the most intuitive representations, as it pro-
vides information about the notes contained in the piece, which could potentially
provide information about the key and mode. Thus far, chroma has shown little
promise in informing this problem. In order to properly assess these features,
we construct a perceptual study using Amazon’s Mechanical Turk1 (MTurk) to
analyze the relative emotion of two song clips, comparing human ratings of both
the original audio and audio reconstructions from these features. By analyzing
these reconstructions, we seek to directly assess how much information about
musical emotion is retained in these features.

Given our collected data, we also wish to identify patterns in relationships
between musical parameters (e.g. key, mode, tempo) and perceived emotion.
By identifying variability in emotion related to these parameters, we identify
existing features that respond with the highest variance to those that inform
emotion, and the least variance in those that do not. In order to properly assess
a large variety of features, we investigate the features used in our perceptual
study reconstructions, features used in our prior work [2–5], and 14 additional
features from the MIR-toolbox2.

In investigating these invariances, we explore approaches that attempt to
develop feature representations which are specifically optimized for the predic-
tion of emotion. In forming such representations, we are presented with a very
challenging problem as music theory offers an insufficient foundation for con-
structing features using a bottom-up approach. As a result, in previous work we
have instead taken a top-down approach, attempting to learn representations
directly from magnitude spectra [5]. These approaches show much promise but
are highly underconstrained as we have little idea of what our features should
be invariant to. In this paper, we seek to provide some initial insight into how
these problems could be better constrained.

2 Background

A musical piece is made up of a combination of different attributes such as key,
mode, tempo, instrumentation, etc. While not one of these attributes fully de-
scribes a piece of music, each one contributes to the listener’s perception of the
piece. We hope to establish which compositional attributes significantly deter-
mine emotion and which parameters are less relevant. These parameters are not
the sole contributors to the emotion of the music, but are within our ability to
measure from the symbolic dataset we use in our experiments, and therefore
are the focus of this study [6]. Specifically, we want to determine whether these
compositional building blocks induce changes in the acoustic feature domain.

1 http://mturk.com
2 http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/

mirtoolbox
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Invariances in Music Emotion Recognition 3

We motivate our experiments from findings that have been verified by several
independent experiments in psychology [7–9]. When discussing emotion, we refer
to happy versus sad temperament as valence and higher and lower intensity of
that temperament as arousal [10]. Mode and tempo have been shown to consis-
tently elicit a change in perceived emotion in user studies. Mode is the selection
of notes (scale) that form the basic tonal substance of a composition and tempo
is the speed of a composition [11]. Research shows that major modes tend to
elicit happier emotional responses, while the inverse is true for minor modes [9,
12–14]. Tempo also determines a user’s perception of music, with higher tempi
generally inducing stronger positive valence and arousal responses [8, 9, 12, 13,
15].

3 Data Collection

In previous studies (such as [9]), several controlled variations of musical phrases
are provided to each participant. Since we are studying the changes in the acous-
tic feature domain, we require samples that we can easily manipulate in terms
of mode and tempo and that provide a wide enough range to ensure we are
accurately representing all possible variations in the feature space. To this end,
we put together a dataset of 50 Beatles MIDI files, attained online3, spanning 5
albums (Sgt. Peppers, Revolver, Let It Be, Rubber Soul, Magical Mystery Tour).
In order to remove the effect of instrumentation, each song was synthesized as a
piano reduction and a random twenty second clip of each song was used for our
labeling task.

3.1 Song Clip Pair Selection

Labeling the entire 1225 possible pairs from the 50 songs would be prohibitive
so we choose to generate a subset of 160 pairs. Since the Beatles dataset we
use contains 35 songs in the major (Ionian) mode and only 9 in the minor
(Aolean) mode (with 6 additional pieces in alternate modes), we want to ensure
that major-major pairings do not completely dominate our task. Some songs are
represented one extra time in order to generate 160 pairs but no song is repeated
more than once. Out of these 160 pairs, there are 81 major-major pairings, 33
major-minor pairings, and 7 minor-minor pairings.

For each song, we render the piano reduction of the MIDI file for the 20
second clip, and then compute MFCC and chroma features on the audio. After
computing the features, we then synthesize audio from the features. Chroma-
gram features are extracted and reconstructed using Dan Ellis’ chroma features
analysis and synthesis code4 and MFCCs using his rastamat5 library. The MFCC

3 http://earlybeatles.com/
4 http://www.ee.columbia.edu/~dpwe/resources/matlab/chroma-ansyn/
5 http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/
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reconstructions sound like a pitched noise source, and the chroma reconstruc-
tions have an ethereal ‘warbly’ quality to them but sound more like the original
audio than the MFCC reconstruction (examples are available online 6).

3.2 Mechanical Turk Annotation Task

In order to annotate our clip pairs, we use the Mechanical Turk online crowd-
sourcing engine to gain input from a wide variety of subjects [16]. In our Human
Intelligence Task (HIT), we ask participants to label four uniformly selected
song pairs from each of the three categories: original MIDI rendering, MFCC
reconstructions, and chromagram reconstructions. For each pair of clips partic-
ipants are asked to label which one exhibits more positive emotion and which
clip is more intense. The three categories of audio sources are presented on three
separate pages. The participants are always comparing chroma reconstructions
to chroma reconstructions, MFCC reconstructions to MFCC reconstructions or
MIDI renderings to MIDI renderings. Subjects never compare a reconstruction
to the original audio. For each round, we randomly select a clip to repeat as a
means of verification. If a user labels the duplicated verification clip differently
during the round with the original audio, their data is removed from the dataset.

4 Experiments and Results

Our first set of experiments investigates the emotional information retained in
some of the most common acoustic features used in Music-IR, MFCCs and chro-
magrams. As described above, users listen to a pair of clips that was recon-
structed from features (MFCC or chroma) and rate which is more positive and
which has more emotional intensity. We seek to quantify how much information
about musical emotion is retained in these acoustic features by how strongly
emotion ratings of the reconstructions correlate with that of the originals. We
first relate the user ratings to musical tempo and mode, and then we explore
which features exhibit high variance with changes in tempo and mode or are
invariant to altering these musical qualities.

4.1 Perceptual Evaluation of Acoustic Features

Running the task for three days, we collected a total of 3661 completed HITs,
and accepted 1426 for an approval rating of 39%, which is similar to previous
work annotating music data with MTurk [16–18]. The final dataset contains
17112 individual song pair annotations, distributed among 457 unique Turkers,
with each Turker completing on average ∼ 2.5 HITs. With a total of 160 pairs,
this equates to ∼ 35.65 ratings per pair. HITs are rejected for completing the
task too quickly (less than 5 minutes), failing to label the repeated verification
pairs the same for the original versions, and failing too many previous HITs.

6 http://music.ece.drexel.edu/research/emotion/invariance
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While repeated clips were presented for both reconstruction pairs and originals,
requiring identical ratings on the reconstructions ultimately proved to be too
stringent, due to the nature of the reconstructed clips. For the original clips
we required the repeated pair to have the same ratings for both the higher
valence and higher arousal clips, and reversed the A/B presentation of the clips
to ensure Turk users were not just selecting song A or song B for every pair to
speed through the task.

For each pair and for each audio type, we compute the percentage of subjects
that rated clip A as more positive (valence) and the percentage that labeled clip
A as more intense (arousal)

pv =
1

N

N∑

n=1

1{An = HigherValence}, pa =
1

N

N∑

n=1

1{An = HigherArousal} (1)

where N is the total number of annotations for a given clip, pv is the percentage
of annotators that labeled clip A as higher valence, and pa is the percentage of
annotators that labeled clip A as higher arousal. For each song pair, we then
compare the percentage of Turkers who rated song A as more positive in the
original audio to those who rated song A more positive in the reconstructions,
yielding the normalized difference error for all songs.

Audio Normalized Difference Error
Source Valence Arousal

MFCC Reconstructions 0.133± 0.094 0.104± 0.080
Chroma Reconstructions 0.120± 0.095 0.121± 0.082

Table 1. Normalized difference error between the valence/arousal ratings for the re-
constructions versus the originals.

In Table 1, we show the error statistics for the deviation between the two
groups. The paired ratings of each type are also verified with a paired Student’s
t-test to verify that they do not fall under the alternative hypothesis that there
is a significant change, but as we are looking for proof that there is no change,
average error remains the best indicator.

4.2 Relationships Between Muiscal Attributes and Emotional
Affect

Next we analyze the data for trends relating major/minor modes and tempo to
valence and arousal. In Section 2, we discussed the general trend of major tonality
being associated with positive emotional affect and higher tempo corresponding
to an increase in arousal or valence.
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We divide our entire dataset S into a subset M ⊂ S that consists of pairs
that contain one major mode song and one minor mode song, as well as a subset
T ⊂ S in which pairs differ in tempo by more than 10 beats per minute (bpm).
For subset M , we calculate what percentage of users labeled the major song as
more positive and what percentage of users label the major song as more intense.
For subset T , we similarly determine whether the faster song is more intense and
whether the faster song is happier according to the users. Looking at Table 2, we
conclude that the results are commensurate with the findings from the various
psychology studies referenced in Section 2, namely that major songs are happier
and faster songs are more intense.

Null Hypothesis Agreement Ratio

Major Key Labeled as More Positive Valence 0.667
Faster Tempo Labeled More Positive Valence 0.570
Major Key Labeled as More Positive Arousal 0.528
Faster Tempo Labeled as More Positive Arousal 0.498

Table 2. Percentage of paired comparisons that yielded the desired perceptual result
for mode and tempo.

One area where we expected larger agreement is the relationship between
tempo and intensity. We only have the beats per minute for each song, and
we label the faster song as the one with a higher bpm. The note lengths and
emphasis in relation to the tempo are disregarded in this analysis and may be a
source of uncertainty in the result. Depending upon the predominant note value
(quarter/eighth/sixteenth), a slower tempo can sound faster than a song with a
higher number of beats per minute. These are two different compositions, not
the same clip at two different tempos.

4.3 Identifying Informative Feature Domains

When using features to understand certain perceptual qualities of music, it is
important to know how those features relate to changes in the perceptual quali-
ties being studied. We want to find appropriate variances and invariances as they
relate to a perceptual quality. For example, if emotion is invariant to key, if the
key changes, the features should also be invariant to that key change. We want
correlation in variance as well. If the emotion of the audio changes, we want the
features that describe it to change in conjunction with it. In order to investigate
these variances and invariances, we use a feature set from prior work [3], as well
as a set of features from the MIR-toolbox. Using the Beatles’ clips, we generate
changes in key, tempo, and mode to investigate possible corresponding differ-
ences in features. For key, the original was compared with transposed versions
a 5th above and below. For tempo, the original was compared with versions at
75% and 133% of the original tempo. For mode, we shifted all the minor songs
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to major and all the major songs to natural minor and compared the full dataset
in major vs. the full dataset in minor.

Because the features contain different dimensions and have different ranges,
looking at differences in their direct results does not allow for proper comparison
between them. In order to draw proper comparisons, the features are normalized
over dimension and range.

Given 2 feature vectors over time F1 ∈ RM×N and F2 ∈ RM×N , we normalize
the content over the vectors’ shared range.

F ′1 =
F1 −min(F1 ∪ F2)

max(F1 ∪ F2)
, F ′2 =

F2 −min(F1 ∪ F2)

max(F1 ∪ F2)
, (2)

The mean for each dimension is calculated, creating mean vectors µ1 ∈ RN×1 and
µ2 ∈ RN×1. The average feature change across all dimensions is then computed.

FeatureChange =
1

N

N∑

n=1

|µ1(n)− µ2(n)|, (3)

If this FeatureChange value is low, it means that the feature is invariant to the
musical change being presented. In Table 3 we observe that features that exhibit
higher variance to the specified change (tempo up/down, key up/down, and
mode shift) should be more effective in computational models that are sensitive
to these parameters. Several intuitive features including onsets, RMS energy,
and beat spectrum emerge as the most variant features to tempo. Conversely,
it is intuitive that features like mode and tonal center do not vary much with
tempo.

Tempo Up Tempo Down Key Up Key Down Mode Shift

Feature Feature Feature Feature Feature Feature Feature Feature Feature Feature
Domain Change Domain Change Domain Change Domain Change Domain Change

Onsets 0.127 Onsets 0.126 Key 0.142 Key 0.145 Mode 0.142
Beat Spec. 0.081 Beat Spec. 0.078 Beat Spec. 0.134 Beat Spec. 0.131 Tonal Cent. 0.114
RMS Energy 0.049 RMS 0.050 Tonal Cent. 0.105 Tonal Cent. 0.102 Beat Spec. 0.103
HCDF 0.024 HCDF 0.022 MFCC 0.084 MFCC 0.178 Key 0.063
xChroma 0.024 xChroma 0.021 Zerocross 0.081 Zerocross 0.064 Chroma 0.047
Roughness 0.023 Roughness 0.019 Chroma 0.055 Chroma 0.051 MFCC 0.030
Zerocross 0.022 SSD 0.017 Contrast 0.054 Contrast 0.049 Brightness 0.019
Brightness 0.021 MFCC 0.016 Regularity 0.050 xChroma 0.048 Onsets 0.015
SSD 0.021 Brightness 0.015 xChroma 0.038 Regularity 0.045 Attacktime 0.014
MFCC 0.017 Zerocross 0.015 Mode 0.038 SSD 0.041 Regularity 0.013
Chroma 0.014 Chroma 0.014 Brightness 0.037 Brightness 0.041 Zerocross 0.012
Key 0.013 Key 0.014 SSD 0.036 Mode 0.040 Contrast 0.011
S. Contrast 0.012 Regularity 0.011 Attacktime 0.030 Attacktime 0.026 xChroma 0.011
Regularity 0.012 Contrast 0.010 RMS 0.021 Roughness 0.023 SSD 0.010
Fluctuation 0.011 Fluctuation 0.009 Roughness 0.021 Onsets 0.020 RMS 0.009
Attacktime 0.010 Mode 0.007 Onsets 0.017 RMS 0.017 Attack Slope 0.008
Mode 0.009 Attacktime 0.007 Attack Slope 0.015 HCDF 0.015 Roughness 0.007
Tonal Cent. 0.007 Tonal Cent. 0.006 HCDF 0.012 Attack Slope 0.009 HCDF 0.006
Attack Slope 0.006 Attack Slope 0.005 Fluctuation 0.008 Fluctuation 0.008 Fluctuation 0.002

Table 3. Normalized feature change with respect to musical mode and tempo alter-
ations.
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5 Discussion and Future Work

In this paper, we have provided a perceptual evaluation of emotional content in
audio reconstructions from acoustic features, and at the time of writing we know
of no other work that has performed such experiments. In addition, we have re-
lated our findings to those of previous work showing correlation between major
keys and increased positive emotion as well as increased tempo and increased
positive emotion and activity. For tempo, mode and key we have provided a
variational analysis for a large number of acoustic features. The findings we pre-
sented should be informative for future computational investigations in modeling
emotions in music using content based methods.
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