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Abstract. We have previously proposed a structured sparse approach
to piano transcription with promising results recorded on a challenging
dataset. The approach taken was measured in terms of both frame-based
and onset-based metrics. Close inspection of the results revealed prob-
lems in capturing frames displaying low-energy of a given note, for exam-
ple in sustained notes. Further problems were also noticed in the onset
detection, where for many notes seen to be active in the output tran-
cription an onset was not detected. A brief description of the approach
is given here, and further analysis of the system is given by considering
an oracle transcription, derived from the ground truth piano roll and the
given dictionary of spectral template atoms, which gives a clearer indi-
cation of the problems which need to be overcome in order to improve
the proposed approach.
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1 Introduction

Automatic Music Transcription (AMT) is the attempt for machine understand-
ing of musical pieces. Many methods proposed for AMT use atomic decompo-
sitions of a spectrogram with spectral basis atoms representing musical notes.
The atoms may be learned online, using methods such as Non-negative Matrix
Factorisation (NMF') [6] or sparse dictionary learning [8]. Alternatively a dictio-
nary may be learnt offline, and the decomposition performed using methods like
P-LCA [9] or sparse coding [4].

Often the output from AMT systems is displayed and understood through a
piano roll, a pitch time representation relating the onsets and offsets of pitched
note events. AMT performance is measured by comparing a computed piano roll
with a given ground truth. Often the performance measures are frame-based,
with true positives, false negatives and false positives denoted in the derived
piano roll and several metrics have been proposed which use these annotations.
An alternative perspective to measuring AMT performance is an event-based
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analysis [5]. Event-based metrics compare AMT performance in terms of the
number of notes for which a correct onset is found within a time-based tolerance.

We have previously proposed an AMT system using structured sparse repre-
sentations [7] which produced promising results for both frame- and event-based
transcription. Visual inspection of the resultant energy-based piano rolls suggests
that this approach performs well, capturing much of the energy in the signal,
while some limitations are noticed. Often it is found that the energy in the early
part of a note is captured, while later sustained elements may be missed, effect-
ing the frame-based analysis. Errors are also noted in the event-based analysis,
for which a simple threshold-based onset detection system was used.

These observations lead us to perform an oracle analysis of the system, in
order to investigate the causes of these errors, which could possibly reside in
either the dictionary used, the transcription system or in the onset detection
system. As the system is ultimately based on a (non-negative) least squares
analysis, an oracle transcription can be derived by decomposing the signal at
each point in time using non-negative least squares (NNLS) with only the atoms
representing the notes active, as given by the ground truth, at that time. In
the rest of this paper, we describe briefly the AMT system used and the oracle
transcription, before analysing the results given by the oracle transcription.

2 Transcription Using Structured Sparse Representations

Sparse representations seek to form the approximation s =~ Dt where s is a
signal vector, D is a dictionary of atoms, and t is a coefficient vector which is
sparse, having few non-zero coefficients. Algorithms for solving sparse represen-
tation problems include Orthogonal Matching Pursuit (OMP) [11] which selects,
iteratively, the atom most correlated with the residual error and adds this to the
support, or collection of selected atoms. At each iteration the supported atoms
are backprojected onto the initial signal, giving interim coefficients and a new
residual error. Another approach to sparse approximation is the Basis Pursuit
(BP) [12], for which many algorithms can be used to solve the optimisation

mtin||s—DtH§+)\||t||1 (1)

where the second term is a penalisation term which promotes sparsity.

Music transcription can be thought of as an inherently sparse problem, as
only a few notes are active at a given time. In this work non-negative sparse
representations are required to decompose the magnitude spectogram. In group
or block sparse representations, it is assumed that certain atoms tend to be active
together. This assumption can be leveraged for transcription purposes, as in the
previous work [7], allowing several atoms to be used together to represent a note,
thereby affording the possiblilty to capture better the dynamics of the frequency
spectrum of a note, and hopefully reducing the error in the transcription system.
In this prior the block of atoms used to represent each note was made of a fixed
number, P, of atoms which were adjacent in the dictionary D € RM*K_ Here
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K = L x P where L is the number of groups, thereby defining a set of indices G
for the group-based dictionary:

G={GIG ={Px(I—1)+1,...Px I}Vl e {l,...L}.

In [7] a variant of the Non-negative Basis Pursuit (NN-BP) algorithm [1]
was proposed which we call NN-BP(GC). This variant differs from the NN-
BP algorithm only through the calculation of a group coefficient, on which the
thresholding step is performed, and is outlined in Algorithm 1. Transcriptions
using this method had high recall, as many true positives were recovered, while
displaying low accuracy as many false positives were also found, though many
of the false positives were seen to be of low energy. This poor performance may
be due partially to the lack of explicit group penalisation in this method.

A non-negative group version of OMP called Non-negative Nearest Subspace
OMP (NN-NS-OMP) was also proposed. This was seen to suffer from a failure
to capture low energy atoms, and harmonic jumping was seen to have a negative
effect on time continuity in note events in the piano roll. As the method is iter-
ative, a stopping condition needs to be selected, and it was found that selection
of an apt stopping condition was tricky.

Algorithm 1 NN-BP(GC)

Input
De RY*F , Se RN 5, T° =DTS, ' =14V
repeat
DTSk,
tk,n — tk,n [DTDT]kYn + 2\

until a fixed number of iterations
GCi, =Y Tegn V(,n)
GCy =03 Iy =10 V{l',n'} s.t. GCyvn/ < 6 x max GC

Molecular sparsity [2] was proposed as an extension of greedy sparse algo-
rithms, in which several atoms related through proximal structure were selected
together at each iteration, based on a coefficient system which considered several
atoms simultaneously. This approach has the advantage of favouring structure
in the decomposition. For example in the Molecular Matching Pursuit (MMP)
[2], a molecule of time-persisting tonal elements were extracted from the spec-
trogram at each iteration by performing tracking through time from an initially
selected atom until the onset and offset of the tonal element were found, and all
interim atoms were selected.

Initial attempts to build a molecular transcription system were seen to fail
when polyphony grew as it became difficult to track pitched atoms (or groups
of atoms), due to high projection values being present beyond the onset and
offset points of a note, in particular when notes which were similarly pitched
or harmonically related were active there. This led to a two-step approach. As
previously mentioned the NN-BP(GC) displayed high recall and it was observed
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that notes displayed time continuity in otherwise very noisy transcriptions, and
it was proposed to first decompose the spectrogram using the NN-BP(GC).
Isolated atom supports were pruned and clustering of time-persisting atoms into
molecules was performed on the sparse support I'. The molecules were then input
to a greedy method called Molecular Non-negative Nearest Subspace OMP (M-
NN-NS-OMP) which selects at each iteration one predetermined molecule.

Algorithm 2 M-NN-NS-OMP

Input
D ERKIXK , S €§RfXN, I e {O,I}LXN, G, o
Initialise
1=0; &= 0LXN; B = {ﬁnllgn = {}Vn € {17 >N}}
repeat

i=1+1

Get group coefs © and smoothed coefs O

XG,n = argming |[r, — Dgx||3 st. x >0Vl €T,
n+a—1
Oun=lxaunlli s Oun= > Ouu/a
n/=n
Select initial atom and grow molecule
{[, A} = arg maxy,n él,n
Nmin =Mminm s.t. [; o =1, 5= {n,...,7}
Nmaz = Maxn S.t. Fi,E =1, &={n,..,n}
Bn =B Ul Yn € = = {Nmin, ..., maz }
Calculate current coefficients and residual
tc, . = ming||s, — Dg, t|3 Vne =
r,"" =s,—Dg, tc, Vnez
until stopping condition met

The M-NN-NS-OMP algorithm returns a sparse group coefficient matrix, T,
and the transcription performance using this approach was measured with both
frame-based and onset-based analysis. The frame-based analysis is performed
by comparing a ground truth and the derived transcription. Each frame which
is found to be active in both the ground truth and the transcription denotes a
true positive - tp while frames which are active only in the ground truth and
transcription denote false negatives -fn and false positives - fp, respectively.

For event-based analysis, onset detection was performed on T. An simple
threshold-based onset detector was used, based upon the one used in [10] which
registered an onset when a threshold value was surpassed and subsequently sus-
tained for a given number of successive frames for a note in the coefficient matrix
T. A tp was registered when the onset was detected within one time bin of a
similarly pitched onset in the ground truth. Similar to the frame-based analysis,
an onset found only in the ground truth registered a fn, and an onset found only
in the transcription registered a fp.
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Using these markers the following metrics are defined for both frame- and
event-based transcription; Acc = tp x 100/(tp + fp) relates the accuracy of the
system in finding correct frames; the recall Rec = tp x 100/(tp + fn) defines
the performance in terms of the amount of correct frames found relative to the
number of active frames in the ground truth; F' = 2 % Acc * Rec/(Acc + Rec)
defines overall performance, considering both false positives and negatives in the
measure.

2.1 Experimental Results

Transcription experiments were run using the molecular approach on a set of
pieces played on a Disklavier piano from the MAPS [3] database which includes
a midi-aligned ground truth. A subdictionary was learnt for each midi note in the
range 21 — 108 from isolated notes also included in the MAPS database, and D
was formed by concatenating these subdictionaries. Transcription was performed
using the two-step NN-BP(GC) followed by M-NN-NS-OMP approach.

]Onset-based Frame-based
lPHAcc‘Rec‘ F Acc‘Rec‘ F
78.3|74.3|76.3(/69.1(73.6|71.3
78.8|76.2|77.5(/69.0{76.4|72.5
77.6|77.1|77.4]/69.578.7|73.8
78.8|77.3|78.1||71.8(79.3|75.3
78.6|77.8|78.2||72.9|80.0/76.3

Y | W N =

Table 1. Frame-based and onset-based transcription results for the proposed molecular
approach, relative to the block size, P

We can see from the table of results the performance for both onset-based
and frame-based metrics improves with the group size P, thereby validating the
use of group sparse representations for this purpose. The experiments were run
with a common value used as the stopping condition. Further experiments have
shown that improved performance is possible using different values for each group
size. In particular, an F-measure greater than 80% was achieved for frame-based
transcription for P = 5.

3 Transcription Oracle for Sparse Methods

An oracle for transcription performance is proposed. OMP-based methods use a
backprojection of the selected atoms onto the signal to produce the final coef-
ficients, thereby gives a (non-negative) least squares error solution with a given
support. As the MAPS [3] database comes with a standardised ground truth, we
consider an oracle transcription for a given dictionary, given the ground truth
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support. At each time bin we calculate the non-negative least squares solution
using only the groups of atoms G9%“!¢, known from the ground truth to be active
at the time bin n.

3s.tt>0Vn € {1,..N} (2)

tGEmclc = mtin ||Sn — DG;zmclct

The oracle group coefficient matrix E is formed by summing the coefficients of
the indiviual group members

El,n = Z T%C?;le V{l, TL} (3)

4 Oracle Analysis

Using this oracle, we can probe the effectiveness of the approach taken to AMT.
Interesting observations were made with relation to two aspects of the transcrip-
tion system; often there is very low energy in supported atoms in E, which may
explain how the thresholding in the NN-BP(GC) effected the possible recall rate;
secondly, using the oracle transcription provides an insight into the effectiveness
of the onset detection system used.

4.1 Energy Based Thresholding

In the NN-BP(GC) algorithm, a thresholding factor ¢ is used, which is multiplied
by the maximum value of the group sparse coefficients GC. For the experiments
in [7], a value of 6 = 0.01 was used. Using this value for § it was found that
the recall rate of the NN-BP(GC) algorithm in these experiments was 87%,
and closer analysis showed that often the false negatives existed at the tail of
sustained notes, were it is expected that low energy is displayed. This recovery
rate effectively sets an upper bound on the possible recall rate of the M-NN-NS-
OMP.

The oracle energy matrix E was calculated for each piece from the MAPS
dataset used in the previous experiments for both ERB and STFT decomposi-
tions, both of which used dictionaries learnt from the same dataset of isolated
notes in MAPS as used in the previous work [7]. The signals were undersampled
to 22.05k H z, and the ERB spectrogram used 256 frequency bin scale with a 23ms
time window. The STFT used a 1024 frequency bin spectrogram, with a a 75%
overlap, in order to use the same time resolution as the ERB. The NN-BP(GC)
was also run for both tranforms to compare the effects of & thresholding.

The results are displayed in Table 2, where it seen that Rec® ¢, the per-
centage of frames in the oracle transcription E with higher coefficients than the
signal dependent threshold, th = § x max E is very similar in both transforms,
across all values of delta. A similar pattern is also seen for Rec, the recall rate us-
ing the NN-BP(GC), which is smaller than Rec°"®® but again is similar across
the transforms, which suggests that the problem here is energy related, and not
related to the dictionaries. It can be seen that while the recall rate increases as
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STFT ERB

l 0 Acc\ Rec\ Recom el Acc\ Rec\ Recomeele
0.1 88.6| 38.2 44.1 84.4| 37.3 44.6
0.01 38.5| 84.6 90.7 36.4| 85.0 90.6
0.001 || 19.2|92.8 96.5 17.71 93.5 96.4
0.0001|| 12.7| 95.2 97.1 12.2] 95.6 97.0

Table 2. Analysis of effect of 6 on Acc and Rec of NN-BP(GC) and the oracle

0 decreases, the accuracy of the NN-BP(GC) is greatly reduced. Using a smaller
value of accuracy might negatively interfere with the final transcription, by intro-
ducing oversized molecules and may also effect on the computational load using
the current approach as the M-NN-NS-OMP will require more projections.

4.2 Onset Analysis

In the prior work, a simple threshold-based onset detection system was used,
which triggered an onset when a threshold value was surpassed and sustained
for a minimum length of time. A true positive was flagged when this trigger
happened within one time frame of a ground truth onset of the same note.
Using the optimal transcription E we can test the effectiveness of this onset
detection system. Experiments were run using the same parameters as in [7] and
the results are presented in Table 3.

P 1 2 3 4 5
Rec 76.2 78.5 79.5 80.1 80.1
Acc 86.4 87.1 87.0 87.3 86.8

Table 3. Onset analysis of oracle transcription E for different values of P

The results are not promising given that an oracle transcription is given to
the onset detector. Closer inspection of the individual results reveal systematic
flaws in the onset detection. False positives are often found when a sustained
note is retriggered by oscillation around the threshold value, behaviour which
is often found in the presence of other note onsets and may be due to transient
signal elements effecting the smoothness of the decomposition across time. Sev-
eral common types of false negative were found. It is found that a note replayed
with minimal time between the offset of the original event and the onset of the
following event may produce a false negative where the observed coefficient has
not already fallen below the threshold value. When several notes onset simulta-
neously, onsets may not be detected for all of these notes. A tendency for lower
pitched notes not to trigger an onset event in the detection system is also no-
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ticed. Further to this we also find some timing errors, where a false negative and
a false positive are closely spaced.

5 Conclusion

We have previously proposed an AMT system based on group sparse representa-
tions which is relatively fast and shows promising results. An oracle transcription
has been presented here, which gives some insight into the some weaknesses in
the AMT system, as currently exists. Further work will focus on improving the
AMT system, by incorporating a more sophisticated onset detection system and
possibly using a new algorithm to perform the decomposition.

References

1. Aharon, M., Elad, M., Bruckstein, A. M.: K-SVD and its non-negative variant for
dictionary design. In: Proc. of the SPIE conference wavelets, 2005, pp. 327-339

2. Daudet, L.: Sparse and structured decompositions of signals with the molecular
matching pursuit. In: IEEE Transactions on Audio, Speech and Language Process-
ing, 2006, pp. 1808-1816

3. Emiya, V., Badeau, R., David, B.: Multipitch estimation of piano sounds using a
new probabilistic spectral smoothness principle. In: IEEE Transactions on Audio,
Speech and Language, 2010, pp. 1643-1654

4. Leveau, P., Vincent, E., Richard, G., Daudet, L.: Instrument-Specific Harmonic
Atoms for Mid-Level Music Representation. In: IEEE Transactions on Audio, Speech
and Language, 2008, pp. 116-128

5. Poliner, G., Ellis, D.: A discrimative model for polyphonic piano transcription. In:
EURASIP Journal Advances in Signal Processing, no. 8, 2007, pp. 154-162

6. Smaragdis, P., Brown, J. C.: Non-negative matrix factorization for polyphonic music
transcription. In: IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, 2003

7. O’Hanlon, K., Nagano, H., Plumbley, M. D.: Structured Sparsity for Automatic Mu-
sic Transcription. In: IEEE Int. Conference on Audio, Speech and Signal Processing
2012.

8. Abdallah, S.A., Plumbley, M. D.: Polyphonic transcription by non-negative sparse
coding of power spectra. In: Proceedings ISMIR, 2004, pp. 318-325

9. Benetos, E., Dixon, S.: Multiple-Instrument polyphonic music transcription using a
convolutive probabilistic model. In: Proceedings of the Sound and Music Computing
Conference 2011

10. Bertin, N., Badeau, R., Vincent, E.: Enforcing harmonicity and smoothness in
bayesian non-negative matrix factorization applied to polyphonic music transcrip-
tion. In: IEEE Transactions on Audio, Speech, and Language Processing, vol. 18,
no. 3, pp. 538549, Mar 2010.

11. Pati, Y. C., Reuzaiifar, R.: Orthogonal Matching Pursuit: Recursive function ap-
proximation with applications to wavelet decomposition. In: Proceedings of the 27th
Annual Asilomar Conference on Signals, Systems and Computers, 1993, pp. 40-44.

12. Chen, S. S., Donoho, D. L., Saunders, M. A.: Atomic decomposition by Basis
Pursuit. In: STAM Journal on Scientific Computing, vol. 20, pp. 33-61, 1998.

598





